For a cyclic quadilateral, the combination of opposite angles = 180°. So <G is opposite to <E so G must be 153°
(-3.5,-5.5) are the coordinates for R. x goes first in the ordered pair. (x,y)
5.
In 4.75 the 7 makes it round up to 5
Answer:
- x = arcsin(√20.5 -3√2) +2kπ . . . k any integer
- x = π - arcsin(√20.5 -3√2) +2kπ . . . k any integer
Step-by-step explanation:
Add √(82) -3sin(x) to both sides to get ...
2sin(x) = √82 -√72
Now, divide by 2 and find the arcsine:
sin(x) = (√82 -√72)/2
x = arcsin((√82 -√72)/2)
Of course, the supplement of this angle is also a solution, along with all the aliases of these angles.
___
In degrees, the solutions are approximately 16.562° and 163.438° and integer multiples of 360° added to these.