in theory yes but at the same time you would have to reverse enginere it and have it reject the fruit flys dna strands
Answer:
If both parents do not have sickle-cell anemia, than the possibility is low.
Explanation:
If both parents have the sickle-cell trait, their offspring has a 25 percent chance of getting sickle cell anemia and a 50 percent risk of them having sickle cell trait. Meanwhile, there is also a 25 percent chance of the child not getting it at all.
If one parent has sickle cell anemia and the other has sickle cell trait, then their offspring with have a 50 percent chance of getting sickle cell anemia and a 50 percent chance of getting a sickle cell trait.
When both parents have sickle cell anemia, their child will definitely have it.
Answer:
Pyruvate kinase
Explanation:
Yeasts convert glycerol and sugars into glyceraldehyde 3-phosphate (G3P) through independent pathways. Then, G3P forms pyruvate and, in some circumstances, pyruvate is converted in ethanol, which can be used as energy sources. If the mutation affects any reaction before G3P formation, it will only affect yeast growing either on sugar or pyruvate but not both.
Pyruvate kinase is the only enzyme on the list acting after G3P is formed and before pyruvate is formed. All other options are enzymes acting only in the formation of G3P from sugars. Meaning that only pyruvate kinase mutants will lack the ability to grow on both sugars and glycerol.