Answer:
When we have a quadratic equation:
a*x^2 + b*x + c = 0
There is something called the determinant, and this is:
D = b^2 - 4*a*c
If D < 0, then the we will have complex solutions.
In our case, we have
5*x^2 - 10*x + c = 0
Then the determinant is:
D = (-10)^2 - 4*5*c = 100 - 4*5*c
And we want this to be smaller than zero, then let's find the value of c such that the determinant is exactly zero:
D = 0 = 100 - 4*5*c
4*5*c = 100
20*c = 100
c = 100/20 = 5
As c is multiplicating the negative term in the equation, if c increases, then we will have that D < 0.
This means that c must be larger than 5 if we want to have complex solutions,
c > 5.
I can not represent this in your number line, but this would be represented with a white dot in the five, that extends infinitely to the right, something like the image below:
Answer:
Choices 1 and 4 are correct.
Step-by-step explanation:
We first need to find what the slope of the line is. That way, we can find out which possible answers are perpendicular to it:

Since we now have the slope, we need the negative reciprocal of it. Remember: if x is the slope, it's negative reciprocal will be
. Therefore, if the line's slope is 3, then we need to find answers with a slope of
.
The first answer is correct, as you have marked. The second answer, while written a little weirdly, does show the slope as 3, which we know as wrong. The third choice is not correct, however. This equation is written in point-slope form, where
. The only variable we have to worry about is m, which, in the third choice, is 3. The fourth answer is correct, which sounds weird at first. Let's put that equation into slope-intercept form:

Equations like these can be real sneaky, so it's important not to jump to conclusions with them.
Answer:
StartFraction sine (100 degrees) Over 3.5 EndFraction = StartFraction sine (S) Over 2.4 EndFraction
in other words, A.
Step-by-step explanation:
Answer:
B? I am confused.
Step-by-step explanation: