The question is worded poorly, but it looks like you have a lever in equilibrium, with a force x at a distance d from the fulcrum, and a force y at a distance L - d from the fulcrum. You already have the equilibrium formula for this situation:
xd = y(L - d)
If you know x, y, and d, you can solve for the length L.
        
             
        
        
        
first function                                        2nd function
slope =(y2-y1)/(x2-x1)                          slope =(y2-y1)/(x2-x1) 
   =(14-2)/(3-0)                                        m = (-3--12/(3-0)
12/3                                                               m=(-3+12)/3
4                                                                   m =9/3 =3
y = 4x+2                                                    y = 3x+-12
set these two equations equal
4x+2 = 3x-12
subtract 3x
x+2 = -12
subtract 2 from each side
x = -14
y = 3x-12
y =3*(-14)-12
y = -42-12
y = -54
ChoiceD
 
        
                    
             
        
        
        
The quotient of 3489 divided by 6 is 581.
        
                    
             
        
        
        
15  -  natural (1,2,3...15....) and integers (...-2,-1,0, 1,2,...15,...)