Answer:
Part 1) 
Part 2) 
Part 3) 
Part 4) 
Part 5) 
Part 6) 
Step-by-step explanation:
Part 1) we know that
The shaded region is equal to the area of the complete rectangle minus the area of the interior rectangle
The area of rectangle is equal to

where
b is the base of rectangle
h is the height of rectangle
so



Part 2) we know that
The shaded region is equal to the area of the complete rectangle minus the area of the interior square
The area of square is equal to

where
b is the length side of the square
so



Part 3) we know that
The area of the shaded region is equal to the area of four rectangles plus the area of one square
so



Part 4) we know that
The shaded region is equal to the area of the complete square minus the area of the interior square
so



Part 5) we know that
The area of the shaded region is equal to the area of triangle minus the area of rectangle
The area of triangle is equal to

where
b is the base of triangle
h is the height of triangle
so



Part 6) we know that
The area of the shaded region is equal to the area of the circle minus the area of rectangle
The area of the circle is equal to

where
r is the radius of the circle
so


Answer:
Therefore 200.96 ft.of fencing are needed to go around the pool path.
Step-by-step explanation:
Given, a circular swimming pool has a radius of 28ft. There is a path all the way around the pool. The width of the path 4 ft.
The radius of the outside edge the pool path is
= Radius of the pool + The width of the path
= (28+4) ft
= 32 ft.
To find the length of fencing, we need to find the circumference of outside the pool path.
Here r= 32 ft
The circumference of outside edge of the pool path
=

=200.96 ft.
Therefore 200.96 ft.of fencing are needed to go around the pool path.
H≥45 in
...
Place a solid dot at 45, because 45 in is part of the solution set, then extend a positive line from that dot going to the right.
Answer:
Tamara's example is in fact an example that represents a linear functional relationship.
- This is because the cost of baby-sitting is linearly related to the amount of hours the nany spend with the child: the more hours the nany spends with the child, the higher the cost of baby-sitting, and this relation is constant: for every extra hour the cost increases at a constant rate of $6.5.
- If we want to represent the total cost of baby-sitting in a graph, taking the variable "y" as the total cost of baby-sitting and the variable "x" as the amount of hours the nany remains with the baby, y=5+6.5x (see the graph attached).
- The relation is linear because the cost increases proportionally with the amount of hours ($6.5 per hour).
- See table attached, were you can see the increses in total cost of baby sitting (y) when the amount of hours (x) increases.