Answer:
½ sec²(x) + ln(|cos(x)|) + C
Step-by-step explanation:
∫ tan³(x) dx
∫ tan²(x) tan(x) dx
∫ (sec²(x) − 1) tan(x) dx
∫ (sec²(x) tan(x) − tan(x)) dx
∫ sec²(x) tan(x) dx − ∫ tan(x) dx
For the first integral, if u = sec(x), then du = sec(x) tan(x) dx.
∫ u du = ½ u² + C
Substituting back:
½ sec²(x) + C
For the second integral, tan(x) = sin(x) / cos(x). If u = cos(x), then du = -sin(x) dx.
∫ -du / u = -ln(u) + C
Substituting back:
-ln(|cos(x)|) + C
Therefore, the total integral is:
½ sec²(x) + ln(|cos(x)|) + C
Given the compound statement <span>(p∨q)∧r
where: p: 5 < -3
q : All vertical angles are congruent.
r: 4x = 36, then x = 9.
Recall the in logic, '</span>∨' symbolises "or" while '∧' symbolises "and".
Therefore, the compound statement <span>(p∨q)∧r can be written as follows:
Either 5 < -3 or all vertical angles are congruent, and if 4x = 36, then x = 9.
</span>
Answer:
a = 1√6
b = -2
Step-by-step explanation:
Hello,
To solve this trigonometric problem, we need to convert this values into fractions
a).
Sin45° = 1/√2
cos30° = √3/2
Sin60° = √3/2
Sin45° / (cos30° + sin60°) = [(1/√2) ÷ (√3/2 + √3/2)]
(1/√2) ÷ (√3/2 + √3/2)
Add √3/2 + √3/2
1/√2 ÷ 2√3/2
1/√2 × 2/2√3
2/2√(2×3)
2/2√6
1/√6
b
Cos 180° = -1
Sin150° = ½
Tan135° = -1
2cos180° - 2sin150° - tan135°
(2 × -1) - (2×½) - (-1)
-2 - 1 + 1 = -2
Answer:
I think 15%
Step-by-step explanation:
sorry if wrong Hope you do good !
-Ash
A = a+b
——- h
2
5(7)
——- 3
2
=52.5