Answer:
82.5 minutes
Step-by-step explanation:
We have to figure out how many minutes are in 17/8 hours. 17/8 = 2 1/8 hours. We know that 2 hours is 120 minutes.
1/8hours x 60 min = 7.5 minutes.
120 + 7.5 = 127.5 minutes then subtract out 45. That leaves 82.5 minutes.
974.5 is the answer to what you are trying to solve
Answer:
Solution given;
<ABD=<BAC+<ACB
<u>Since</u><u> </u><u>exterior</u><u> </u><u>angle</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>triangle</u><u> </u><u>is</u><u> </u><u>equal</u><u> </u><u>to</u><u> </u><u>the</u><u> </u><u>sum</u><u> </u><u>of</u><u> </u><u>two</u><u> </u><u>opposite</u><u> </u><u>interior</u><u> </u><u>angle</u>
26x+20=19x-15+9x+25
solve like terms
26x+20=28x+10
subtracting both by 10
26x+20-10=28x+10-10
Subtracting both side by 26x
10=28x-26x
2x=10
dividing both side by 2
2x/2=10/2
x=5
Now
<ABD=26*5+20=l50°
<u>T</u><u>h</u><u>e</u><u> </u><u>v</u><u>a</u><u>l</u><u>u</u><u>e</u><u> </u><u>o</u><u>f</u><u> </u><u><</u><u>A</u><u>B</u><u>D</u><u> </u><u>i</u><u>s</u><u> </u><u>1</u><u>5</u><u>0</u><u>°</u>
Answer:
The answer to your question is Width = 
Step-by-step explanation:
Data
Area = (x² - 4)/2 x in²
Length = (x + 2)² / 2 in
Width = ?
Process
1.- Write the formula of the area of a rectangle
Area = length x width
-Solve for width
Width = Area / length
2.- Substitute the values
Width = (x² - 4)/2 / (x + 2)² / 2
-Simplify
Width = (x² - 4) / (x + 2)²
-Factor both numerator and denominator
Width = (x - 2)(x + 2) / (x + 2)(x + 2)
- Simplify
Width = (x - 2) /(x + 2) or Width = 