1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena L [17]
3 years ago
5

Solve 3k^2=8k+8,using completing the square method ​

Mathematics
2 answers:
user100 [1]3 years ago
6 0

Answer:

check the pic

Step-by-step explanation:

GenaCL600 [577]3 years ago
5 0

Answer:

3k2=8k+8 

Two solutions were found :

 k =(8-√160)/6=(4-2√ 10 )/3= -0.775

 k =(8+√160)/6=(4+2√ 10 )/3= 3.442

Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "k2"   was replaced by   "k^2". 

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

                     3*k^2-(8*k+8)=0 

Step by step solution :

Step  1  :

Equation at the end of step  1  :

3k2 - (8k + 8) = 0

Step  2  :

Trying to factor by splitting the middle term

 2.1     Factoring  3k2-8k-8 

The first term is,  3k2  its coefficient is  3 .

The middle term is,  -8k  its coefficient is  -8 .

The last term, "the constant", is  -8 

Step-1 : Multiply the coefficient of the first term by the constant   3 • -8 = -24 

Step-2 : Find two factors of  -24  whose sum equals the coefficient of the middle term, which is   -8 .

     -24   +   1   =   -23     -12   +   2   =   -10     -8   +   3   =   -5     -6   +   4   =   -2     -4   +   6   =   2     -3   +   8   =   5     -2   +   12   =   10     -1   +   24   =   23

Observation : No two such factors can be found !! 

Conclusion : Trinomial can not be factored

Equation at the end of step  2  :

3k2 - 8k - 8 = 0

Step  3  :

Parabola, Finding the Vertex :

 3.1      Find the Vertex of   y = 3k2-8k-8

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 3 , is positive (greater than zero). 

 Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions. 

 Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex. 

 For any parabola,Ak2+Bk+C,the  k -coordinate of the vertex is given by  -B/(2A) . In our case the  k  coordinate is   1.3333  

 Plugging into the parabola formula   1.3333  for  k  we can calculate the  y -coordinate : 

  y = 3.0 * 1.33 * 1.33 - 8.0 * 1.33 - 8.0 

or   y = -13.333

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = 3k2-8k-8

Axis of Symmetry (dashed)  {k}={ 1.33} 

Vertex at  {k,y} = { 1.33,-13.33}  

 k -Intercepts (Roots) :

Root 1 at  {k,y} = {-0.77, 0.00} 

Root 2 at  {k,y} = { 3.44, 0.00} 

Solve Quadratic Equation by Completing The Square

 3.2     Solving   3k2-8k-8 = 0 by Completing The Square .

 Divide both sides of the equation by  3  to have 1 as the coefficient of the first term :

   k2-(8/3)k-(8/3) = 0

Add  8/3  to both side of the equation : 

   k2-(8/3)k = 8/3

Now the clever bit: Take the coefficient of  k , which is  8/3 , divide by two, giving  4/3 , and finally square it giving  16/9 

Add  16/9  to both sides of the equation :

  On the right hand side we have :

   8/3  +  16/9   The common denominator of the two fractions is  9   Adding  (24/9)+(16/9)  gives  40/9 

  So adding to both sides we finally get :

   k2-(8/3)k+(16/9) = 40/9

Adding  16/9  has completed the left hand side into a perfect square :

   k2-(8/3)k+(16/9)  =

   (k-(4/3)) • (k-(4/3))  =

  (k-(4/3))2 

Things which are equal to the same thing are also equal to one another. Since

   k2-(8/3)k+(16/9) = 40/9 and

   k2-(8/3)k+(16/9) = (k-(4/3))2 

then, according to the law of transitivity,

   (k-(4/3))2 = 40/9

We'll refer to this Equation as  Eq. #3.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of

   (k-(4/3))2   is

   (k-(4/3))2/2 =

  (k-(4/3))1 =

   k-(4/3)

Now, applying the Square Root Principle to  Eq. #3.2.1  we get:

   k-(4/3) = √ 40/9 

Add  4/3  to both sides to obtain:

   k = 4/3 + √ 40/9 

Since a square root has two values, one positive and the other negative

   k2 - (8/3)k - (8/3) = 0

   has two solutions:

  k = 4/3 + √ 40/9 

   or

  k = 4/3 - √ 40/9 

Note that  √ 40/9 can be written as

  √ 40  / √ 9   which is √ 40  / 3 

Solve Quadratic Equation using the Quadratic Formula

 3.3     Solving    3k2-8k-8 = 0 by the Quadratic Formula .

 According to the Quadratic Formula,  k  , the solution for   Ak2+Bk+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                     

            - B  ±  √ B2-4AC

  k =   ————————

                      2A 

  In our case,  A   =     3

                      B   =    -8

                      C   =   -8 

Accordingly,  B2  -  4AC   =

                     64 - (-96) =

                     160

Applying the quadratic formula :

               8 ± √ 160 

   k  =    —————

                    6

Can  √ 160 be simplified ?

Yes!   The prime factorization of  160   is

   2•2•2•2•2•5  

To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a squarei.e. second root).

√ 160   =  √ 2•2•2•2•2•5   =2•2•√ 10   =

                ±  4 • √ 10 

  √ 10   , rounded to 4 decimal digits, is   3.1623

 So now we are looking at:

           k  =  ( 8 ± 4 •  3.162 ) / 6

Two real solutions:

 k =(8+√160)/6=(4+2√ 10 )/3= 3.442 

or:

 k =(8-√160)/6=(4-2√ 10 )/3= -0.775 

Two solutions were found :

 k =(8-√160)/6=(4-2√ 10 )/3= -0.775

 k =(8+√160)/6=(4+2√ 10 )/3= 3.442

You might be interested in
What is the measure of B E​
DedPeter [7]

24 what i did was multi (16)(9) then divided by 6

3 0
4 years ago
What is the slope line that connects the points (-3,5) and (6,11)
Alexeev081 [22]

Answer:

slope-2/3

Step-by-step explanation:

slope formula (y2-y1)/(x2-x1)

plug in the coordinates

(11-5)/(6--3)

two negatives equal a positive

(11-5)/(6+3)

add or subtract the numbers

6/9

simplify

2/3

5 0
3 years ago
Please help with problems 20 and 21 (IF YOU KNOW BOTH)
irakobra [83]
Number twenty-one is one and three-fourths 
8 0
3 years ago
It takes Megan 4 hours to read 3 chapter in her book How many chapters can she read in 10 hours
DerKrebs [107]
In 4 hours, she read 3 chapters.
In 1 hour, she reads 3/4 chapters.
In 10 hours, she reads 3/4 x 10= 3/2 x 5 = 15/2 = 7 and a half chapters.
5 0
4 years ago
Given that
VLD [36.1K]

-17/2

Step-by-step explanation:

30-8(8)+4y

30=64+4y

30-64=4y

-34=4y

y= -34/4

y= -17/2

hope it helps!

6 0
3 years ago
Other questions:
  • david counts the quarters in his change jar. He has 24 more quarters than his brother Rob. if r is the number of quarters Rob ha
    8·1 answer
  • Y=4x-7 and y=x-3 <br>please help
    7·1 answer
  • Hey can you please help me posted picture of question
    6·2 answers
  • 0.1 x 23<br><br><br><br><br><br><br><br> Please help me
    8·2 answers
  • When baking a cake, you have a choice of the following pans: a round cake pan that is 2 inches deep and has a 7 inch diameter a
    5·1 answer
  • What is the Percentage of 23000?
    9·1 answer
  • Easy. Please Answer!<br> I’ll mark Brainly!!!
    6·1 answer
  • PLEASE HELP!!
    11·1 answer
  • i need someone to do my 7th grade summer school work i will pay it's math and ela add me on dis if going to help me Kalani#5906
    10·1 answer
  • Write a numerical expression for the calculation.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!