Answer:
Incomplete question
Complete question:
a constant force acts upon an object, the acceleration of the object varies inversely with its mass. When a certain constant force acts upon an object with mass 44kg , the acceleration of the object is 4m/s². If the same force acts upon another object whose mass is 11kg what is this object's acceleration?
Answer: 8m/s²
Explanation:
From the statement we deduced that acceleration varies inversely with mass where force was kept constant.
Therefore,
F/m = a or F = ma
For the first statement, substituting the mass and acceleration gives:
F = 44 x 4 = 88N
Applying the force above to the second mass gives us:
a = 88/11 = 8m/s²
Answer:
<em>The ball will go as high as 8.46 m</em>
Explanation:
<u>Projectile Motion</u>
It's the type of motion that experiences an object launched at a certain height above the ground and moves along a curved path exclusively under the action of gravity.
Being vo the initial speed of the object, θ the initial launch angle, and g the acceleration of gravity, then the maximum height hm can be calculated as follows:

The soccer ball is kicked at a speed of vo=24 m/s at an angle of θ=31°. Taking the value of
, then:



The ball will go as high as 8.46 m
The difference is intensity is assessed using a special scale and magnitude is measure of the size ( for example a earthquake)
Answer:
<u>2.48 m</u> is the length of the rope.
Explanation:
Cycle period is 321
Time is 20 second
Wave travels at speeds = 26.4 m/s
We know that,

Frequency required for 321 complete cycle in 20 seconds is

Frequency = 16.05 hz
We know that,


λ = wavelength, the distance between "wave crests" (m)
v = wave velocity, the "speed" that waves are moving in a direction (m/s)
f = frequency, (cycles/ or Hz)

λ = 1.65 m
As per given question "length of the rope has three equal length segment"



Length of the rope = 2.48 m
Therefore, length of the rope is <u>2.48 m.</u>