Answer:
Let I and j be the unit vector along x and y axis respectively.
Electric field at origin is given by
E= kq1/r1^2 i + kq2/r2^2j
= 9*10^9*1.6*10^-19*/10^-6*(2i+ j)
= (2.88i + 1.44j)*10^-3 N/C
Force on charge= qE= 3*10^-19*1.6*(2.88i +1. 44 j) *10^-3
F= (1.382 i + 0.691 j) *10^-21
Goodluck
Explanation:
Answer:
0.54454
104.00902 N
Explanation:
m = Mass of wheel = 100 kg
r = Radius = 0.52 m
t = Time taken = 6 seconds
= Final angular velocity
= Initial angular velocity
= Angular acceleration
Mass of inertia is given by

Angular acceleration is given by

Equation of rotational motion

The coefficient of friction is 0.54454
At r = 0.25 m

The force needed to stop the wheel is 104.00902 N
Answer:
a) p₀ = 1.2 kg m / s, b) p_f = 1.2 kg m / s, c) θ = 12.36, d) v_{2f} = 1.278 m/s
Explanation:
a system formed by the two balls, which are isolated and the forces during the collision are internal, therefore the moment is conserved
a) the initial impulse is
p₀ = m v₁₀ + 0
p₀ = 0.6 2
p₀ = 1.2 kg m / s
b) as the system is isolated, the moment is conserved so
p_f = 1.2 kg m / s
we define a reference system where the x-axis coincides with the initial movement of the cue ball
we write the final moment for each axis
X axis
p₀ₓ = 1.2 kg m / s
p_{fx} = m v1f cos 20 + m v2f cos θ
p₀ = p_f
1.2 = 0.6 (-0.8) cos 20+ 0.6 v_{2f} cos θ
1.2482 = v_{2f} cos θ
Y axis
p_{oy} = 0
p_{fy} = m v_{1f} sin 20 + m v_{2f} cos θ
0 = 0.6 (-0.8) sin 20 + 0.6 v_{2f} sin θ
0.2736 = v_{2f} sin θ
we write our system of equations
0.2736 = v_{2f} sin θ
1.2482 = v_{2f} cos θ
divide to solve
0.219 = tan θ
θ = tan⁻¹ 0.21919
θ = 12.36
let's look for speed
0.2736 = v_{2f} sin θ
v_{2f} = 0.2736 / sin 12.36
v_{2f} = 1.278 m / s
After 20 s, the motorcycle attains a speed of

and it continues at this speed for the next 40 s. So at 45 s, its speed is 80 m/s.