Recall Euler's theorem: if
, then
![a^{\phi(n)} \equiv 1 \pmod n](https://tex.z-dn.net/?f=a%5E%7B%5Cphi%28n%29%7D%20%5Cequiv%201%20%5Cpmod%20n)
where
is Euler's totient function.
We have
- in fact,
for any
since
and
share no common divisors - as well as
.
Now,
![37^{32} = (1 + 36)^{32} \\\\ ~~~~~~~~ = 1 + 36c_1 + 36^2c_2 + 36^3c_3+\cdots+36^{32}c_{32} \\\\ ~~~~~~~~ = 1 + 6 \left(6c_1 + 6^3c_2 + 6^5c_3 + \cdots + 6^{63}c_{32}\right) \\\\ \implies 32^{37^{32}} = 32^{1 + 6(\cdots)} = 32\cdot\left(32^{(\cdots)}\right)^6](https://tex.z-dn.net/?f=37%5E%7B32%7D%20%3D%20%281%20%2B%2036%29%5E%7B32%7D%20%5C%5C%5C%5C%20~~~~~~~~%20%3D%201%20%2B%2036c_1%20%2B%2036%5E2c_2%20%2B%2036%5E3c_3%2B%5Ccdots%2B36%5E%7B32%7Dc_%7B32%7D%20%5C%5C%5C%5C%20~~~~~~~~%20%3D%201%20%2B%206%20%5Cleft%286c_1%20%2B%206%5E3c_2%20%2B%206%5E5c_3%20%2B%20%5Ccdots%20%2B%206%5E%7B63%7Dc_%7B32%7D%5Cright%29%20%5C%5C%5C%5C%20%5Cimplies%2032%5E%7B37%5E%7B32%7D%7D%20%3D%2032%5E%7B1%20%2B%206%28%5Ccdots%29%7D%20%3D%20%2032%5Ccdot%5Cleft%2832%5E%7B%28%5Ccdots%29%7D%5Cright%29%5E6)
where the
are positive integer coefficients from the binomial expansion. By Euler's theorem,
![\left(32^{(\cdots)\right)^6 \equiv 1 \pmod9](https://tex.z-dn.net/?f=%5Cleft%2832%5E%7B%28%5Ccdots%29%5Cright%29%5E6%20%5Cequiv%201%20%5Cpmod9)
so that
![32^{37^{32}} \equiv 32\cdot1 \equiv \boxed{5} \pmod9](https://tex.z-dn.net/?f=32%5E%7B37%5E%7B32%7D%7D%20%5Cequiv%2032%5Ccdot1%20%5Cequiv%20%5Cboxed%7B5%7D%20%5Cpmod9)
Answer:
Step-by-step explanation:
1. (sq root of) a^2 if a>0 => √(a^2) = ±a
2. (sq root of) 36x^2 if a>0 => ±6x
Answer:
L (1, - 7 )
Step-by-step explanation:
give endpoints (x₁, y₁ ( and (x₂, y₂ ) then the midpoint is
(
,
)
here (x₁, y₁ ) = K (9, - 7 ) and (x₂, y₂ ) = L (x, y )
use the midpoint formula and equate to corresponding coordinates of M
= 5 ( multiply both sides by 2 to clear the fraction )
9 + x = 10 ( subtract 9 from both sides )
x = 1
and
= - 7 ( multiply both sides by 2 )
- 7 + y = - 14 ( add 7 to both sides )
y = - 7
Then L = (1, - 7 )
The tenth place is the first number to the right of a decimal. To determine if you're rounding or not, check the hundred's place, 2 numbers to the right of a decimal, for 5 or higher. If it's .45, round to .5, if it's .44, round to .4
Your answer is 524.5, which is B.)
1. a = 1/2x - 3
2. a = 2x + 7