Answer:
Option A is the correct choice.
Step-by-step explanation:
Let d be the number of boxes of duck calls and t be the number of boxes of turkey calls.
We have been given that a company sells boxes of duck calls for $35 and boxes of turkey calls (t) for $45, so the revenue earned from selling d boxes of duck and t boxes of turkey call will be 35d and 45t respectively.
Further, the company plan to make $300. We can represent this information as:

We are also told that they make batches of duck calls that fill 6 boxes and batches of turkey calls that fill 8 boxes. the company only has 42 boxes. We can represent this information as:


Therefore, our desired system of equation will be:

Answer:
3
Step-by-step explanation:
Use the Pythagorean Theorem.
=
+
1369=
+100
-100 -100
1269=
=
3
=x
The minimum cost option can be obtained simply by multiplying the number of ordered printers by the cost of one printer and adding the costs of both types of printers. Considering the options:
69 x 237 + 51 x 122 = 22,575
40 x 237 + 80 x 122 = 19,240
51 x 237 + 69 x 122 = 20,505
80 x 237 + 40 x 122 = 23,840
Therefore, the lowest cost option is to buy 40 of printer A and 80 of printer B
The equation, x + 2y ≤ 1600 is satisfied only by options:
x = 400; y = 600
x = 1600
Substituting these into the profit equation:
14(400) + 22(600) - 900 = 17,900
14(1600) + 22(0) - 900 = 21,500
Therefore, the option (1,600 , 0) will produce greatest profit.
Answer and Step-by-step explanation:


We know that:
→ 
→ 
→
× 
→ 
⇒ 