Answer:
Hence, AB=12.
Step-by-step explanation:
We are given that the perpendicular bisector of side AB of ∆ABC intersects side BC at point D.
this means that side AE=BE.
Also we could clear;ly observe that
ΔBED≅ΔAED
( since AE=BE, side ED common, ∠BED=∠AED
so by SAS congruency the two triangles are congruent)
Now we are given that:
the perimeter of ∆ABC is 12 cm larger than the perimeter of ∆ACD.
i.e. AB+AC+BC=AC+AD+CD+12
AB+BC=AD+CD+12
as AD=BD
this means that AD+CD=BD+CD=BC
AB+BC=BC+12
AB=12
Hence AB=12