Answer:
The equation for finding the hypotenuse is:
c^2+c^2=h^2
For example, in the first exercise:
8^2+10^2=164^2
For clearing the equation, find out the root of 164=
12.8
Hypotenuse of the first triangle is 12.8!
Let me help you with the next, if you still dont get it:
8^2+13^2=233^2
Root of 233: 15.2
Hypotenuse of second triangle is 15.2!
Step-by-step explanation:
We have:
x - y = 43 , xy = 15
To find, the value of x^2+y^2x
2
+y
2
= ?
∴ x - y = 43
Squaring both sides, we get
(x - y)^2(x−y)
2
= 43^243
2
⇒ x^2+y^2x
2
+y
2
- 2xy = 1849
Using the algebraic identity,
(a - b)^2(a−b)
2
= a^2+b^2a
2
+b
2
- 2ab
⇒ x^2+y^2x
2
+y
2
= 1849 + 2xy
Put xy = 15, we get
x^2+y^2x
2
+y
2
= 1849 + 2(15)
⇒ x^2+y^2x
2
+y
2
= 1849 + 30
⇒ x^2+y^2x
2
+y
2
= 1879
∴ x^2+y^2x
2
+y
2
= 1879
I will send hint follow this hint then slove it .
thankyou
Answer:
Luis bought 5 packages of candy and 5 bags of chips
Step-by-step explanation:
1.25 for candy
0.50 for chips
1.25c + 0.50c = 8.75
First I tried to see how many times I could multiply 1.25, the answer that made the most sense was 5 because not only is 5 + 5 = 10, but when it equals the amount of money. So I changed my equation:
1.25(5) + 0.5(5)
6.25 + 2.5 = 8.75
Answer:
Option A.
Step-by-step explanation:
We need to find a table for which the y-value will be the greatest for very large values of x.
From the given table it is clear that the largest value of x in all tables is 5.
In table A, y=64 at x=5.
In table B, y=32 at x=5.
In table C, y=40 at x=5.
In table D, y=13 at x=5.
It is clear that 64 is the greatest value among 64, 32, 40 and 13.
It means table in option A represents the function for which the y-value will be the greatest for very large values of x.
Therefore, the correct option is A.
Its the 3, 4, 5 Pythagorean Triple so it would be D 8 inches