It is hard to show work for this problem because it very similar to a basic addition or subtraction problem.
Just so you have the answer and how to solve. -27 is the answer. Think about it like 41-14 then add the negative back. But I would strongly suggest not writing that as work because you teacher might get confused about what you are doing
Step-by-step explanation:
The ratio of Ali mass to Williams mass is
6 : 3
= 2 : 1
Option 2 is the correct answer
We can simply multiply the roots together to find the original function.
(x + 2)(x - 4)(x - 4)(x - 3)
FOIL.
x^2 - 4x + 2x - 8(x - 4)(x - 3)
Combine like terms.
x^2 - 2x - 8(x - 4)(x - 3)
FOIL.
x^3 - 2x^2 - 8x - 4x^2 + 8x + 32(x - 3)
Combine like terms.
x^3 - 6x^2 + 32(x - 3)
FOIL.
x^4 - 6x^3 + 32x - 3x^3 + 18x^2 - 96
Combine like terms.
<h3>x^4 - 9x^3 + 18x^2 + 32x - 96 is the original function with the given roots.</h3>
Since the congruent operator is ≅ and since AD is congruent to BD, I'm going to assume that you want to prove that AD is congruent to BD.
1. DE is equal to CD by definition since D is the midpoint of CE.
2. AE is equal to BC since opposite sides of a rectangle are equal to each other.
3. Angle AEC is equal to Angle BCE since all angles in a rectangle are right angles and all right angles are equal to each other.
4. Triangles ADE and BDC are congruent to each other because we have SAS congruence for both triangles.
5. AD is congruent to BC since they're corresponding sides of congruent triangles.
It’s the light blue one!!!