Answer:
<u>Option C. 9</u>
Step-by-step explanation:
The question is as following:
In triangle ABC, D is the midpoint of line AB and E is the midpoint of line BC. If AC= 3x-15 and DE= 6, what is the value of x?
==================================================
See the attached figure which represents the problem.
As shown:
D is the midpoint of line AB ⇒ AD = DB
E is the midpoint of line BC ⇒ BE = EC
Apply The Mid-segment theorem which states that the mid-segment connecting the midpoints of two sides of a triangle is parallel to the third side of the triangle, and the length of this mid-segment is half the length of the third side.
So, DE = 0.5 AC
Given: Ac = 3x-15 and DE =6
∴ 6 = 0.5 (3x - 15)
solve for x
Multiply both sides by 2
12 = 3x - 15
3x = 12 + 15 = 27
x = 27/3 = 9
So, the value of x is 9
<u>The answer is option C. 9</u>
Answer:
0.9355
Step-by-step explanation:
What we will use here is conditional probability formula.
let A be the event that the plane departs on time
and B be the event that it arrives on time
P(A) = 0.87
P(B|A) = 0.93
P(B) = ?
P(A n B) = ?
Mathematically;
P(B|A) = P(B nA)/P(A)
0.93 = 0.87/P(A)
P(A) = 0.87/0.93
P(A) = 0.935483870967742
which is 0.9355 to four decimal places
Answer:
Goal = x
45000 = 9/10 * x
x = 45000 * 10/9 = 50000
Step-by-step explanation:
You may find something useful on my you tube channel "Sciency Sergei". You may also suggest a topic to discuss or problems to solve.
I don't think you use a fraction. You multiply .6666 by 72 which equals 47.9952 or rounded 48. :)