Answer:
The quotient is the solution to a division sum.
Step-by-step explanation:
A single number can not have a quotient.
Answer:
(98/100)*110 = $107.8
Step-by-step explanation:
Answer:
x = 1 + i sqrt(7/2) or x = 1 - i sqrt(7/2)
Step-by-step explanation:
Solve for x:
2 x^2 - 4 x + 9 = 0
Divide both sides by 2:
x^2 - 2 x + 9/2 = 0
Subtract 9/2 from both sides:
x^2 - 2 x = -9/2
Add 1 to both sides:
x^2 - 2 x + 1 = -7/2
Write the left hand side as a square:
(x - 1)^2 = -7/2
Take the square root of both sides:
x - 1 = i sqrt(7/2) or x - 1 = -i sqrt(7/2)
Add 1 to both sides:
x = 1 + i sqrt(7/2) or x - 1 = -i sqrt(7/2)
Add 1 to both sides:
Answer: x = 1 + i sqrt(7/2) or x = 1 - i sqrt(7/2)
Step-by-step explanation:
(a) ∫₋ₒₒ°° f(x) dx
We can split this into three integrals:
= ∫₋ₒₒ⁻¹ f(x) dx + ∫₋₁¹ f(x) dx + ∫₁°° f(x) dx
Since the function is even (symmetrical about the y-axis), we can further simplify this as:
= ∫₋₁¹ f(x) dx + 2 ∫₁°° f(x) dx
The first integral is finite, so it converges.
For the second integral, we can use comparison test.
g(x) = e^(-½ x) is greater than f(x) = e^(-½ x²) for all x greater than 1.
We can show that g(x) converges:
∫₁°° e^(-½ x) dx = -2 e^(-½ x) |₁°° = -2 e^(-∞) − -2 e^(-½) = 0 + 2e^(-½).
Therefore, the smaller function f(x) also converges.
(b) The width of the intervals is:
Δx = (3 − -3) / 6 = 1
Evaluating the function at the beginning and end of each interval:
f(-3) = e^(-9/2)
f(-2) = e^(-2)
f(-1) = e^(-1/2)
f(0) = 1
f(1) = e^(-1/2)
f(2) = e^(-2)
f(3) = e^(-9/2)
Apply Simpson's rule:
S = Δx/3 [f(-3) + 4f(-2) + 2f(-1) + 4f(0) + 2f(1) + 4f(2) + f(3)]
S ≈ 2.5103
Answer:
m = 8
Step-by-step explanation:
turn it into a square and then you can divide 48 by 6 and the answer is 8