The numbers divisible by 3 are multiples of 3.
First we need to calculate how many years her brother has when she is 18. As text says he is:
18/3 = 6 years old
Now when she gains another 18 years (36-18=18) he will also gain those 18 years
When she is 36 he will have 6+18=24 years old
Answer is 24.
Answer:
5
Step-by-step explanation:
5-3=2
2/10=1/5
Answer:
Part a) The radii are segments AC and AD and the tangents are the segments CE and DE
Part b) 
Step-by-step explanation:
Part a)
we know that
A <u>radius</u> is a line from any point on the circumference to the center of the circle
A <u>tangent</u> to a circle is a straight line which touches the circle at only one point. The tangent to a circle is perpendicular to the radius at the point of tangency.
In this problem
The radii are the segments AC and AD
The tangents are the segments CE and DE
Part b)
we know that
radius AC is perpendicular to the tangent CE
radius AD is perpendicular to the tangent DE
CE=DE
Triangle ACE is congruent with triangle ADE
Applying the Pythagoras Theorem

substitute the values and solve for CE





remember that
CE=DE
so

Answer:
the width is 10 m
Step-by-step explanation:
if the relationship between area and width is
A = 80*w − w²
for an area A=700 m² , we have
700 m² = 80*w − w²
w² - 80*w + 700 m² = 0
aw² + b*w + c = 0
where a=1 , b=-80 and c=700
this quadratic equation has as solution the following formula
w = [-b ± √ ( b² - 4*a*c) ]/(2*a)
replacing values
w = [80 ± √ ( 80² - 4*1*700) ]/(2*1) = (80 ± 60)/2
then
w₁=(80 - 60)/2 = 10 m
w₂ =(80 + 60)/2 = 70 m
since the area has the form A= length * width = 80*w − w² = (80− w)*w
then the length of the rectangle is
length = 80− w
for w₁=10 m → length = 80− 10 = 70 m
for w₁=70 m → length = 80− 70 = 10 m
by definition the shorter side is the width ( and the longer one , the length) , therefore the only possible option is the first one .
Thus the width is 10 m