
Actually Welcome to the Concept of the Inverse of real function.
Let's consider here, g(n) = y ,
so we get as,
![y = \sqrt[3]{ \frac{n - 1}{2} }](https://tex.z-dn.net/?f=y%20%3D%20%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7Bn%20-%201%7D%7B2%7D%20%7D%20)
no, cubing the power both side we get as,
=>

now,

so finally, we get as,
=>

hence,here, n = inverse of the g(n) function.
so,
g^-1 (n) = 2y^3+1.
You have to switch the 8 to the left and the y to the right which would change the equation to 9-8=y
y=1
Step-by-step explanation:
Answer:
<u>Triangle ABC and triangle MNO</u> are congruent. A <u>Rotation</u> is a single rigid transformation that maps the two congruent triangles.
Step-by-step explanation:
ΔABC has vertices at A(12, 8), B(4,8), and C(4, 14).
- length of AB = √[(12-4)² + (8-8)²] = 8
- length of AC = √[(12-4)² + (8-14)²] = 10
- length of CB = √[(4-4)² + (8-14)²] = 6
ΔMNO has vertices at M(4, 16), N(4,8), and O(-2,8).
- length of MN = √[(4-4)² + (16-8)²] = 8
- length of MO = √[(4+2)² + (16-8)²] = 10
- length of NO = √[(4+2)² + (8-8)²] = 6
Therefore:
and ΔABC ≅ ΔMNO by SSS postulate.
In the picture attached, both triangles are shown. It can be seen that counterclockwise rotation of ΔABC around vertex B would map ΔABC into the ΔMNO.