Answer:
81
Step-by-step explanation:
let the terms be a,ar,ar²
r=2/3
a+a(2/3)+a(2/3)²=171
multiply by 9
9a+6a+4a=171×9
19 a=171×9
a=(171×9)/(19)
a=9×9=81
If you break it up:
Three-eighths = 3/8
Sixteen times a number, we'll call the unknown number X, so 16X.
Twenty Four = 24
The sum of 16X and 24 = 16X + 24
We want 3/8 of that sum so we put the sum in parenthesis and we get:
Y = 3/8(16X + 24) where Y is the answer youd get if you knew what X was.
There are 14 chairs and 8 people to be seated. But among the 8. three will be seated together:
So 5 people and (3) could be considered as 6 entities:
Since the order matters, we have to use permutation:
¹⁴P₆ = (14!)/(14-6)! = 2,162,160, But the family composed of 3 people can permute among them in 3! ways or 6 ways. So the total number of permutation will be ¹⁴P₆ x 3!
2,162,160 x 6 = 12,972,960 ways.
Another way to solve this problem is as follow:
5 + (3) people are considered (for the time being) as 6 entities:
The 1st has a choice among 14 ways
The 2nd has a choice among 13 ways
The 3rd has a choice among 12 ways
The 4th has a choice among 11 ways
The 5th has a choice among 10 ways
The 6th has a choice among 9ways
So far there are 14x13x12x11x10x9 = 2,162,160 ways
But the 3 (that formed one group) could seat among themselves in 3!
or 6 ways:
Total number of permutation = 2,162,160 x 6 = 12,972,960
Answer:
DANG some of these questions are from like 2017 and still havent been answerd
Step-by-step explanation: