Answer:

Step-by-step explanation:
Step 1: Define
Difference Quotient: 
f(x) = -x² - 3x + 1
f(x + h) means that x = (x + h)
f(x) is just the normal function
Step 2: Find difference quotient
- <u>Substitute:</u>
![\frac{[-(x+h)^2-3(x+h)+1]-(-x^2-3x+1)}{h}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B-%28x%2Bh%29%5E2-3%28x%2Bh%29%2B1%5D-%28-x%5E2-3x%2B1%29%7D%7Bh%7D)
- <u>Expand and Distribute:</u>
![\frac{[-(x^2+2hx+h^2)-3x-3h+1]+x^2+3x-1}{h}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B-%28x%5E2%2B2hx%2Bh%5E2%29-3x-3h%2B1%5D%2Bx%5E2%2B3x-1%7D%7Bh%7D)
- <u>Distribute:</u>

- <u>Combine like terms:</u>

- <u>Factor out </u><em><u>h</u></em><u>:</u>

- <u>Simplify:</u>

Answer:
The correct answer is - 12.
Step-by-step explanation:
Given:
Total number of people = y = 39x+50
Total amount spent y = 518
Solution:
The equation for the number of people who attended the dinner
y = 39x+50
The cost of dinner is equally divided by number of people =
then, 518 = y
placing value, 518 = 39x+50
x = (518-50)/39
= 468/39
= 12
Then number of people attended the dinner = 12
Answer:
the system of equation has infinite solution
Step-by-step explanation:
, 
Solve the first equation for x_2
Subtract 5x1 on both sides


Now substitute -5x1 on second equation



0=0
So the system of equation has infinite solution
V= s^3
a=486/6=81
s=sqrt(81)=9
v=9^3=729
the volume of the cube is 729cm^3
Answer:
Cuando María afirma que si unen sus dos cuartos de cartulina obtendrán el medio pliego que necesitan, esto es:
Step-by-step explanation:
Para entender mejor el ejercicio vamos a utilizar números cada vez que se habla de cantidades de cartulina, por lo tanto, María y Juan tienen 1/4 de cartulina cada uno, es decir, 1/4 * 2, y necesitan 1/2 pliego para poder realizar su tarea, por lo tanto, con la afirmación de María sobre unir los dos cuartos de cartulina, en caso de que sea verdadero, ocurrirá que la suma de los dos cuartos dará el medio pliego, como se muestra a continuación:
- Total de cartulina de María y Juan =

- Total de cartulina de María y Juan =

- Total de cartulina de María y Juan =

Procedemos a simplificar el fraccionario obtenido, sacando mitad tanto en el numerador como en el denominador:
- Total de cartulina de María y Juan =

- Total de cartulina de María y Juan =

- <u><em>Total de cartulina de María y Juan = </em></u>
<u><em /></u>
Como puedes ver al final, <u>la cantidad de cartulina de ambos, al ser sumada, da como resultado el 1/2 (medio) pliego que necesitan para su tarea de sociales, por lo cual la afirmación de María es correcta</u>.