Using the binomial distribution, it is found that there is a 0.0328 = 3.28% probability that at least 2 of them choose the same quote.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem, we have that:
- There are 6 students, hence n = 6.
- There are 20 quotes, hence the probability of each being chosen is p = 1/20 = 0.05.
The probability of one quote being chosen at least two times is given by:

In which:
P(X < 2) = P(X = 0) + P(X = 1).
Then:



Then:
P(X < 2) = P(X = 0) + P(X = 1) = 0.7351 + 0.2321 = 0.9672.

0.0328 = 3.28% probability that at least 2 of them choose the same quote.
More can be learned about the binomial distribution at brainly.com/question/24863377
Answer: in statistics deviation is the difference between the value of one number in a series of numbers and the average value of all numbers in the series ( i hope this helped)
Step-by-step explanation:
Answer: the variable is p=6 .
Step-by-step explanation:
Isolate the variable by dividing each side by factors that don't contain the variable
<h2>
Hello!</h2>
The answer is:
The correct option is the first option:

<h2>
Why?</h2>
To write the equation of the line in slope-interception form we need to extract all the information that we need from the graphic.
We must remember that the slope-interception form of the lines is:

Where,
y, is the function
m, is the slope of the line
x, is the variable
b, is the y-axis intercept
We can find the slope using the following formula:

Which is for this case:

As we can see from the graphic, the line is decresing, so the sign of the slope "m" will be negative, so:

We can find the value of "b" seeing where the line intercepts the y-axis.
As we can see it intercept the y-axis at: 
Then, now that we already know the value of "m" and "b", we can write the equation of the line:

So, the correct option is the first option:

Have a nice day!
Answer:
Step-by-step explanation:
Find two linear functions p(x) and q(x) such that (p (f(q(x)))) (x) = x^2 for any x is a member of R?
Let p(x)=kpx+dp and q(x)=kqx+dq than
f(q(x))=−2(kqx+dq)2+3(kqx+dq)−7=−2(kqx)2−4kqx−2d2q+3kqx+3dq−7=−2(kqx)2−kqx−2d2q+3dq−7
p(f(q(x))=−2kp(kqx)2−kpkqx−2kpd2p+3kpdq−7
(p(f(q(x)))(x)=−2kpk2qx3−kpkqx2−x(2kpd2p−3kpdq+7)
So you want:
−2kpk2q=0
and
kpkq=−1
and
2kpd2p−3kpdq+7=0
Now I amfraid this doesn’t work as −2kpk2q=0 that either kp or kq is zero but than their product can’t be anything but 0 not −1 .
Answer: there are no such linear functions.