A: (x + 5i)^2
= (x + 5i)(x + 5i)
= (x)(x) + (x)(5i) + (5i)(x) + (5i)(5i)
= x^2 + 5ix + 5ix + 25i^2
= 25i^2 + 10ix + x^2
B: (x - 5i)^2
= (x + - 5i)(x + - 5i)
= (x)(x) + (x)(- 5i) + (- 5i)(x) + (- 5i)(- 5i)
= x^2 - 5ix - 5ix + 25i^2
= 25i^2 - 10ix + x^2
C: (x - 5i)(x + 5i)
= (x + - 5i)(x + 5i)
= (x)(x) + (x)(5i) + (- 5i)(x) + (- 5i)(5i)
= x^2 + 5ix - 5ix - 25i^2
= 25i^2 + x^2
D: (x + 10i)(x - 15i)
= (x + 10i)(x + - 15i)
= (x)(x) + (x)(- 15i) + (10i)(x) + (10i)(- 15i)
= x^2 - 15ix + 10ix - 150i^2
= - 150i^2 + 5ix + x^2
Hope that helps!!!
Answer:
i guess 3 is the best to remove
Answer:
i think its B
Step-by-step explanation:
3 plus 1 equals 4 so its 4/6. When you simplify it the answer is 2/3
A. z = 0.74
The z-score of 0.74 translates to a percentile of 0.77035. Hence, the area under the standard normal curve to the left of z-score 0.74 is ~0.77.
b. z = -2.16
This z-score translates to a percentile of 0.015386 which is also the numerical value of the area under the curve to the left of the z-score
c. z = 1.02
The percentile equivalent of the z-score above is 0.846. The area is also 0.846.
d. z = -0.15
The percentile equivalent and the area is equal to 0.44.