Ann wants to choose from two telephone plans. Plan A involves a fixed charge of $10 per month and call charges at $0.10 per minute. Plan B involves a fixed charge of $15 per month and call charges at $0.08 per minute.
Plan A $10 + .10/minute
Plan B $15 + .08/minute
If 250 minutes are used:
Plan A: $10+$25=$35
Plan B: $15+$20=$35
If 400 minutes are used:
Plan A: $10+$40=$50
Plan B: $15+$32=$47
B is the correct answer. How to test it:
Plan A: $10+(.10*249 minutes)
$10+$24.9=$34.9
Plan B: $15+(.08*249 minutes)
$15+$19.92=$34.92
Plan A < Plan B if less than 250 minutes are used.
Answer:
The complete solution is
Step-by-step explanation:
Given differential equation is
3y"- 8y' - 3y =4
The trial solution is

Differentiating with respect to x

Again differentiating with respect to x

Putting the value of y, y' and y'' in left side of the differential equation


The auxiliary equation is




The complementary function is

y''= D², y' = D
The given differential equation is
(3D²-8D-3D)y =4
⇒(3D+1)(D-3)y =4
Since the linear operation is
L(D) ≡ (3D+1)(D-3)
For particular integral

[since
]
[ replace D by 0 , since L(0)≠0]

The complete solution is
y= C.F+P.I

Answer:
x= -(d-a)/(b+c)
Step-by-step explanation:
Move all terms to the left side and set equal to zero. Then set each factor equal to zero
Given the graph of the function

and the graph of the function


when f(x) = g(x).
This occurs at the point(s) of intersection of the graphs of the function f(x) and g(x).
From the graph, we can approximate the points of intersection of the graphs of the function f(x) and g(x) to pe points
(-1.9, 13.7) and (2.7, 0).
Answer:
0.12 is the required probability.
Step-by-step explanation:
We are given the following in the question:
A: next component brought in for repair is an audio component
B: event that the next component is a compact disc player


We have to evaluate:

0.12 is the required probability.