Chargaffs rules states that dna from any cell of all organisms should <span>have a 1:1 ratio (base Pair </span>Rule<span>) of pyrimidine and purine bases and, more specifically, that the amount of guanine is equal to cytosine and the amount of adenine is equal to thymine.</span>
Answer:
I'll inform them that the possibility of all their future children/offspring being phenotypically sickle-celled is very high.
Explanation:
Sickle cell is an inherited disease condition in which the red blood cells of the blood loses its shape and hence, dies or gets broken down. It has to do with the blood genotype of an individual. There are three major types of blood genotypes in humans namely: AA, AS, and SS. SS is the recessive genotype that codes for the sickle cell trait.
Hence, a human with the sickle cell trait has a genotype- SS. Therefore, according to this question, a man and a woman, each with sickle-cell trait (SS), were planning to marry, This will mean that both the man and the woman will always produce a gamete with S allele, which will combine to form an SS offspring. In other words, all of the offsprings of this man and woman will be sickle-celled.
So you know that your measurements are exactly correct.
Answer:
What does cellular respiration due?
<h2>Cellular respiration releases stored energy in glucose molecules and converts it into a form of energy that can be used by cells.</h2>
Explanation:
<h2>What are the 7 steps of cellular respiration in order?</h2>
<h2>Overview of the steps of cellular respiration. Glycolysis. Six-carbon glucose is converted into two pyruvates (three carbons each). ATP and NADH are made.</h2>
...
<h2>Glycolysis. ... </h2><h2>Pyruvate oxidation. ... </h2><h2>Citric acid cycle. ... </h2><h2>Oxidative phosphorylation</h2>
<h2>Answer</h2>
<h2> Cellular respiration is a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from oxygen molecules[1] or nutrients into adenosine triphosphate (ATP), and then release waste products.[2] The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy because weak high-energy bonds, in particular in molecular oxygen,[3] are replaced by stronger bonds in the products. Respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are redox reactions. Although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a living cell because of the slow, controlled release of energy from the series of reactions.Nutrients that are commonly used by animal and plant cells in respiration include sugar, amino acids and fatty acids, and the most common oxidizing agent providing most of the chemical energy is molecular oxygen (O2).[1] The chemical energy stored in ATP (the bond of its third phosphate group to the rest of the molecule can be broken allowing more stable products to form, thereby releasing energy for use by the cell) can then be used to drive processes requiring energy, including biosynthesis, locomotion or transport of molecules across cell membranes.</h2>