Answer:
<h2>
Question no 4 answer</h2>
Fossil fuels will still provide 60% of energy in 2040, compared to 85% today, but the pattern of use will change, away from coal and towards gas, and increasingly concentrated in industry. Fossil fuel prices would be lower in a 2˚C scenario, with less need to mobilise high-cost reserves to meet demands.
<h2>
Question no 3 answer</h2>
Carbon emissions trap heat in the atmosphere and lead to climate change. In the United States, the burning of fossil fuels, particularly for the power and transportation sectors, accounts for about three-quarters of our carbon emissions
<h2>
Question no 2 answer</h2>
The premise of this Viewpoint article is that the sustainability of the electricity supply is very often addressed in narrow frames of reference, which sets up incremental decision-making. To more fairly compare the economic, social, and environmental aspects of renewables, such as photovoltaics, to fossil fuels, a broader view is required which needs to take into account the impacts of the fossil fuel supply chain.
<h2>
Question no 1 answer</h2>
These non-renewable fuels, which include coal, oil, and natural gas, supply about 80 percent of the world's energy. They provide electricity, heat, and transportation, while also feeding the processes that make a huge range of products, from steel to plastics.
<h2>
plz mark me as brainliest</h2>
Answer:
D
Explanation:
The simple answer is the electrons in the outermost energy level.
Hydrogen has 1 electron in the outermost energy level.
Magnesium has 2 so this tells you that magnesium has a charge of 2
Oxygen has 6 oxygen has a charge of - 2
Fluorine has 7
For most elements, the electrons in the most outer ring determine the valence of the element.
Notice that the non metals work differently than the metals. Mg may have a charge of 2 and that is the number of electrons in the valence right.
Oxygen is a non metal it has a charge of - 2. It gets 6 electrons by subtracting the number of its charge from 8.
Answer:
Explanation:
1. Depolarizes (depolarization of membrane causes opening of sodium channels which causes outward motion of emphatically charged sodium particles into the grid from the phones. This makes the network be profoundly positive charged and the cell film turns out to be exceptionally contrarily charged)
2. Sodium particles, ECF (As the layer depolarizes, the voltage gated sodium channels situated over the plasma membrane open up and the outwards motion of sodium particle happens deserting an enormous negative charge on plasma layer)
3. Invigorated (the muscle cells contain afferent and efferent neurons which help in transfer of data from muscles to mind and back to muscles. This progression of data happens by the methods for emission of synapses from the mind because of an upgrade)
4. Potassium particles, hyperpolarize (after the activity potential has been played out, the sodium particle channels near forestall further spillage of sodium particles in the ECF. Be that as it may, the potassium channels stay opened for longer occasions and consequently hyperpolarize the layer with a net profoundly negative charge)
5. Resting membrane potential (this procedure is known as transmission of motivation in a cell by a pattern of polarization, depolarization and hyperpolazation)
The answer is Glycerol
Hope this helps