Given that <span>Line WX is congruent to Line XY and Line XZ bisects Angle WXY.
We prove that triangle WXZ is congruent to triangle YXZ as follows:
![\begin{tabular} {|c|c|} Statement&Reason\\[1ex] \overline{WX}\cong\overline{XY},\ \overline{XZ}\ bisects\ \angle WXY&Given\\ \angle WXY\cong\angle YXZ & Deifinition of an angle bisector\\ \overline{XZ}\cong\overline{ZX}&Refrexive Property of \cong\\ \triangle WXZ\cong\triangle YXZ&SAS \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7C%7D%0AStatement%26Reason%5C%5C%5B1ex%5D%0A%5Coverline%7BWX%7D%5Ccong%5Coverline%7BXY%7D%2C%5C%20%5Coverline%7BXZ%7D%5C%20bisects%5C%20%5Cangle%20WXY%26Given%5C%5C%0A%5Cangle%20WXY%5Ccong%5Cangle%20YXZ%20%26%20Deifinition%20of%20an%20angle%20bisector%5C%5C%0A%5Coverline%7BXZ%7D%5Ccong%5Coverline%7BZX%7D%26Refrexive%20Property%20of%20%5Ccong%5C%5C%0A%5Ctriangle%20WXZ%5Ccong%5Ctriangle%20YXZ%26SAS%0A%5Cend%7Btabular%7D)
</span>
Answer:
$97,958.42
Step-by-step explanation:
To solve this problem we can use the compound interest formula which is shown below:

<em>P = initial balance
</em>
<em>r = interest rate
</em>
<em>t = time
</em>
<em>
</em>
First change 6.5% to its decimal form:
6.5% ->
-> 0.065
Next plug in the values:


They have to pay back $97,958.42
To reduce a fraction, divide the numerator and the denominator equally until they reach the simplest whole number possible.
In this case, the numerator (720) and the denominator (1080) can both be divided by 360 to get 2/3, our reduced fraction.
Since ZY bisects GE and XY bisects EF, and both ZY and XY both bisect GF, then XY ~ ZE and ZY ~ XE.
Therefore ZE = XY = 5
And GE = 2× ZE (because bisected segments are = and therefore ×2 = long segment).
So GE = 2ZE = 2×5 = 10
Answer:
1 and 1.5
Step-by-step explanation:
but im not sure