1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Goshia [24]
3 years ago
9

How do you find the inverse of y=2x-3

Mathematics
1 answer:
Lady bird [3.3K]3 years ago
8 0

Subtract 3 from each side

y - 3 = 2x

 

Divide through by 2

y/2 - 3/2 = x

or x = y/2 - 3/2

 

Now simply switch labels: x↔y

y = x/2 - 3/2

You might be interested in
A piece of solid, spherical glass has a circumference of 18.84 centimeters. The sphere is cut in half, creating two identical he
julsineya [31]
We know that

<span>the sphere is divided into two hemispheres
</span><span>the two hemispheres are equals
</span><span>
if </span><span>Tran computes the amount of paint needed to cover the sphere
</span><span>therefore
</span>Tran computes the amount of paint needed to cover <span>both hemispheres.
</span>
the answer is 
Tran found the minimum amount of paint needed to cover both hemispheres.

[surface area of sphere]=4*pi*r²
[surface area of each hemisphere]=2*pi*r²

circumference=18.84 cm------> 2*pi*r------> r=18.84/(2*pi)------> 3cm
[surface area of each hemisphere]=2*pi*3²---------> 56.52 cm²

surface area of sphere=2*56.52=113.04 cm²


7 0
4 years ago
Read 2 more answers
\text{walmart sells 6oz bottle of laundry detergent for 4.80. what is the price per ounce
Alik [6]

Answer:

Wsg luh girl

Step-by-step explanation:

6 0
2 years ago
1. cot x sec4x = cot x + 2 tan x + tan3x
Mars2501 [29]
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
5 0
3 years ago
If JM = 7, MK = 21, and LN = 24, what is NJ?
SSSSS [86.1K]
I hope this helps you

8 0
3 years ago
Find the LCM of 30 and 22. LCM = ___a0
podryga [215]

Answer:

The answer would be 330:)

Step-by-step explanation:

How to Find LCM by Listing Multiples :

List the multiples of each number until at least one of the multiples appears on all lists

Find the smallest number that is on all of the lists

This number is the LCM

RLY hope this helps:) If so, can I have brainliest?

3 0
3 years ago
Other questions:
  • Find the discriminant.<br> 9p^2 + 6p - 5 = 0
    10·1 answer
  • the base of this solid crate has an area of 6 square centimeters the height of the crate is 4 meters what is the volume of the c
    13·2 answers
  • Evaluate this problem l5l- l-5l<br>a. 0<br>b. 10<br>c. 25<br>d. -25​
    14·1 answer
  • What is always important to do before stating the solutions after solving a radical equation? Why?
    12·1 answer
  • PLEASE HELP
    13·1 answer
  • The value of tangent x is given. Find sine x and cos x if x lies in the specified interval.
    7·1 answer
  • Solve the equation -10(g - 6) = 65.
    10·2 answers
  • 1
    8·1 answer
  • Solve the system of equations.<br> - 3x + 2y = 56<br> - 5 - 2y = 24
    10·2 answers
  • Please help me thank you! <br><br> ty ty :)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!