Answer:
The solutions are x = 1.24 and x = -3.24
Step-by-step explanation:
Hi there!
First, let´s write the equation:
log[(x² + 2x -3)⁴] = 0
Apply the logarithm property: log(xᵃ) = a log(x)
4 log[(x² + 2x -3)⁴] = 0
Divide by 4 both sides
log(x² + 2x -3) = 0
if log(x² + 2x -3) = 0, then x² + 2x -3 = 1 because only log 1 = 0
x² + 2x -3 = 1
Subtract 1 at both sides of the equation
x² + 2x -4 = 0
Using the quadratic formula let´s solve this quadratic equation:
a = 1
b = 2
c = -4
x = [-b± √(b² - 4ac)]/2a
x = [-2 + √(4 - 4(-4)·1)]/2 = 1.24
and
x = [-2 - √(4 - 4(-4)·1)]/2 = -3.24
The solutions are x = 1.24 and x = -3.24
Have a nice day!
Answer:
32.8
Step-by-step explanation:
Since the angles given are 90 degrees and 57.2 you can add those together then subtract them from 180 to find the answer 32.8.
180 - 90 + 57.2 = 32.8

First, find the scale factor by dividing the first building's real-life height by its model height.

Now, we'll write an equation to find the model height of the second building.

Here is an equation where
represents the real-life height of a building,
represents the scale factor, and
represents the model height of the same building.
Fill in the information we already know.

Divide both sides by
.


So, the model height of the second building is
inches.
Answer:
V=25088π vu
Step-by-step explanation:
Because the curves are a function of "y" it is decided to take the axis of rotation as y
, according to the graph 1 the cutoff points of f(y)₁ and f(y)₂ are ±2
f(y)₁ = 7y²-28; f(y)₂=28-7y²
y=0; x=28-0 ⇒ x=28
x=0; 0 = 7y²-28 ⇒ 7y²=28 ⇒ y²= 28/7 =4 ⇒ y=√4 =±2
Knowing that the volume of a solid of revolution V=πR²h, where R²=(r₁-r₂) and h=dy then:
dV=π(7y²-28-(28-7y²))²dy ⇒dV=π(7y²-28-28+7y²)²dy = 4π(7y²-28)²dy
dV=4π(49y⁴-392y²+784)dy integrating on both sides
∫dV=4π∫(49y⁴-392y²+784)dy ⇒ solving ∫(49y⁴-392y²+784)dy
49∫y⁴dy-392∫y²dy+784∫dy =
V=4π(
) evaluated -2≤y≤2, or 2(0≤y≤2), also
⇒ V=25088π vu