Answer:
(a) The value of <em>a</em> is 53.35.
(b) The value of <em>a</em> is 38.17.
(c) The value of <em>a</em> is 26.95.
(d) The value of <em>a</em> is 25.63.
(e) The value of <em>a</em> is 12.06.
Step-by-step explanation:
The probability density function of <em>X</em> is:
![f_{X}(x)=\frac{1}{55-22}=\frac{1}{33}](https://tex.z-dn.net/?f=f_%7BX%7D%28x%29%3D%5Cfrac%7B1%7D%7B55-22%7D%3D%5Cfrac%7B1%7D%7B33%7D)
Here, 22 < X < 55.
(a)
Compute the value of <em>a</em> as follows:
![P(X\leq a)=\int\limits^{a}_{22} {\frac{1}{33}} \, dx \\\\0.95=\frac{1}{33}\cdot \int\limits^{a}_{22} {1} \, dx \\\\0.95\times 33=[x]^{a}_{22}\\\\31.35=a-22\\\\a=31.35+22\\\\a=53.35](https://tex.z-dn.net/?f=P%28X%5Cleq%20a%29%3D%5Cint%5Climits%5E%7Ba%7D_%7B22%7D%20%7B%5Cfrac%7B1%7D%7B33%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C0.95%3D%5Cfrac%7B1%7D%7B33%7D%5Ccdot%20%5Cint%5Climits%5E%7Ba%7D_%7B22%7D%20%7B1%7D%20%5C%2C%20dx%20%5C%5C%5C%5C0.95%5Ctimes%2033%3D%5Bx%5D%5E%7Ba%7D_%7B22%7D%5C%5C%5C%5C31.35%3Da-22%5C%5C%5C%5Ca%3D31.35%2B22%5C%5C%5C%5Ca%3D53.35)
Thus, the value of <em>a</em> is 53.35.
(b)
Compute the value of <em>a</em> as follows:
![P(X< a)=\int\limits^{a}_{22} {\frac{1}{33}} \, dx \\\\0.95=\frac{1}{33}\cdot \int\limits^{a}_{22} {1} \, dx \\\\0.49\times 33=[x]^{a}_{22}\\\\16.17=a-22\\\\a=16.17+22\\\\a=38.17](https://tex.z-dn.net/?f=P%28X%3C%20a%29%3D%5Cint%5Climits%5E%7Ba%7D_%7B22%7D%20%7B%5Cfrac%7B1%7D%7B33%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C0.95%3D%5Cfrac%7B1%7D%7B33%7D%5Ccdot%20%5Cint%5Climits%5E%7Ba%7D_%7B22%7D%20%7B1%7D%20%5C%2C%20dx%20%5C%5C%5C%5C0.49%5Ctimes%2033%3D%5Bx%5D%5E%7Ba%7D_%7B22%7D%5C%5C%5C%5C16.17%3Da-22%5C%5C%5C%5Ca%3D16.17%2B22%5C%5C%5C%5Ca%3D38.17)
Thus, the value of <em>a</em> is 38.17.
(c)
Compute the value of <em>a</em> as follows:
![P(X\geq a)=\int\limits^{55}_{a} {\frac{1}{33}} \, dx \\\\0.85=\frac{1}{33}\cdot \int\limits^{55}_{a} {1} \, dx \\\\0.85\times 33=[x]^{55}_{a}\\\\28.05=55-a\\\\a=55-28.05\\\\a=26.95](https://tex.z-dn.net/?f=P%28X%5Cgeq%20%20a%29%3D%5Cint%5Climits%5E%7B55%7D_%7Ba%7D%20%7B%5Cfrac%7B1%7D%7B33%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C0.85%3D%5Cfrac%7B1%7D%7B33%7D%5Ccdot%20%5Cint%5Climits%5E%7B55%7D_%7Ba%7D%20%7B1%7D%20%5C%2C%20dx%20%5C%5C%5C%5C0.85%5Ctimes%2033%3D%5Bx%5D%5E%7B55%7D_%7Ba%7D%5C%5C%5C%5C28.05%3D55-a%5C%5C%5C%5Ca%3D55-28.05%5C%5C%5C%5Ca%3D26.95)
Thus, the value of <em>a</em> is 26.95.
(d)
Compute the value of <em>a</em> as follows:
![P(X\geq a)=\int\limits^{55}_{a} {\frac{1}{33}} \, dx \\\\0.89=\frac{1}{33}\cdot \int\limits^{55}_{a} {1} \, dx \\\\0.89\times 33=[x]^{55}_{a}\\\\29.37=55-a\\\\a=55-29.37\\\\a=25.63](https://tex.z-dn.net/?f=P%28X%5Cgeq%20%20a%29%3D%5Cint%5Climits%5E%7B55%7D_%7Ba%7D%20%7B%5Cfrac%7B1%7D%7B33%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C0.89%3D%5Cfrac%7B1%7D%7B33%7D%5Ccdot%20%5Cint%5Climits%5E%7B55%7D_%7Ba%7D%20%7B1%7D%20%5C%2C%20dx%20%5C%5C%5C%5C0.89%5Ctimes%2033%3D%5Bx%5D%5E%7B55%7D_%7Ba%7D%5C%5C%5C%5C29.37%3D55-a%5C%5C%5C%5Ca%3D55-29.37%5C%5C%5C%5Ca%3D25.63)
Thus, the value of <em>a</em> is 25.63.
(e)
Compute the value of <em>a</em> as follows:
![P(1.83\leq X\leq a)=\int\limits^{a}_{1.83} {\frac{1}{33}} \, dx \\\\0.31=\frac{1}{33}\cdot \int\limits^{a}_{1.83} {1} \, dx \\\\0.31\times 33=[x]^{a}_{1.83}\\\\10.23=a-1.83\\\\a=10.23+1.83\\\\a=12.06](https://tex.z-dn.net/?f=P%281.83%5Cleq%20X%5Cleq%20%20a%29%3D%5Cint%5Climits%5E%7Ba%7D_%7B1.83%7D%20%7B%5Cfrac%7B1%7D%7B33%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C0.31%3D%5Cfrac%7B1%7D%7B33%7D%5Ccdot%20%5Cint%5Climits%5E%7Ba%7D_%7B1.83%7D%20%7B1%7D%20%5C%2C%20dx%20%5C%5C%5C%5C0.31%5Ctimes%2033%3D%5Bx%5D%5E%7Ba%7D_%7B1.83%7D%5C%5C%5C%5C10.23%3Da-1.83%5C%5C%5C%5Ca%3D10.23%2B1.83%5C%5C%5C%5Ca%3D12.06)
Thus, the value of <em>a</em> is 12.06.