1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pogonyaev
3 years ago
12

Which of the following is true about gene duplications?

Biology
1 answer:
sveta [45]3 years ago
7 0

Answer:

The correct answer is Gene duplication create an identical or similar second copy of a gene.

Explanation:

Gene duplication is also called chromosomal duplication is a process by which similar copy of a gene is generated with respect to its precursor gene.

    Any type type of error during DNA replication or repair leads to gene duplication.

   There are many types of gene duplication process among them the most important is retrotransposition, aneuploidy,polyploidy etc.

You might be interested in
When the moon apprears to be growing larger it is said to be?
tresset_1 [31]
I think its illuminating
4 0
3 years ago
N which vertebrates did feathers first evolve?
Lapatulllka [165]
<span>Wings have evolved several times independently. In flying fish, the wings are formed by the enlargement of the pectoral fins. Some fish leap out of the water and glide through the air, both to save energy and to escape predators. If they were already gliding, then any mutation that would result in an increase of the gliding surface would be advantageous to the fish that has it. These advantageous may allow these fish to out-compete the others. 

Wings have also evolved in bats, pterosaurs, and birds. In these animals, the wings are formed by the forelimbs. In some lizards that have evolved gliding flight, however, the "wings" or gliding surfaces may be quite different. The lizard Draco, for example, has gliding surfaces formed by an extension of the ribs. A number of extinct reptiles have similar gliding surfaces. Frogs that glide have expanded webbing on their hands and feet. Gliding ("flying") squirrels and marsupial sugar gliders have flaps of skin that lie between the front and rear limbs. These gliding animals all have one thing in common: a gliding surface that is formed by enlarging some parts of the body. 

In pterosaurs, the wing is formed by an elongated finger and a large skin membrane attached to this finger. In bats, the wing is formed by the entire hand, with skin membranes connecting the elongated fingers. In birds, flight feathers are attached to the entire forelimb, while the fingers have fused together. In all of these animals except birds, the wing is a solid structure. In birds, however, the wing is formed by a large number of individual feathers lying close to each other and each feather is in turn formed by filaments that interlock. 

Biophysicists have determined that flight most likely evolved from the tree down. That means most active flyers evolved flight from an animal that was already gliding. Gliding was therefore probably an indispensable intermediate stage in the evolution of flight. Since gliding has evolved in so many different groups of animals, it follows that the ancestors of birds, bats, and pterosaurs were almost certainly gliders. 

Unfortunately, the fossil records of the immediate gliding ancestors of birds, bats, and pterosaurs are all missing. The first known bat and bird fossils are recognizable as flyers. The same is true of pterosaurs. Therefore the origin of these flyers remain a mystery and a subject of often acrimonious debate. There are people who claim that dinosaurs evolved insulation, which then evolved into feathers, but the evidence for that is lacking. The so-called proto-feathers found on some dinosaurs are indistinguishable from the collagen fibers found in the skin of most vertebrates. Some of the supposedly feathered dinosaurs, such as Caudipteryx and Protarchaeopteryx, are actually flightless birds. The same is probably true of Microraptor fossils, which are (as Alan Feduccia says) probably "avian non-dinosaurs." 

Even though the immediate ancestor of birds remains a mystery, there is a fossil known as Longisquama insignis, which lived during the late Triassic. It has featherlike structures on its back. It was probably a glider of some sort. So, this animal may well be the distant ancestor of Archaeopteryx, the oldest known bird. 

In sum, flying almost certainly evolved from animals that were already gliding, or from the tree down, not from the ground up. The dinosaurian origin of birds requires that dinosaurs evolved feathers from insulation and flight to have evolved from the ground up. Both of these requirements are extremely unlikely to have occurred in evolutionary history, because dinosaurs are almost certainly ectothermic (or "cold-blooded") and therefore they never evolved insulation, and because feathers are too unnecessarily complex to have evolved as insulation. Flight from the ground up is also dangerous because large animals that attempt to fly from the ground may crash and seriously injure or even kill themselves. We all know how dangerous an airplane can be if it loses power and crashes. Small and light weight animals, OTOH, that were already gliding can survive if their attempt to fly fails. Finally, if flight evolved from gliding, then why do animals glide? The answer is that gliding is energetically much cheaper than to descend a tree, walk along the ground, and then climb up another tree. Besides, it is almost certainly much safer to glide from one tree to another than to be walking on the ground for many arboreal animals. 

See link below for details of why dinosaurs are considered ectothermic according to the available scientific evidence.</span>Source(s):<span>http://discovermagazine.com/1996/dec/aco...</span>
3 0
3 years ago
"which of these contributes to the existence of monopoly power?"
lora16 [44]
I think the correct answer is A

7 0
3 years ago
LOTS OF POINTS!!!!!!!!!!!!!!!
inessss [21]
Carpool to work,ride the bus,or switch to electric cars.
7 0
3 years ago
Read 2 more answers
Which of the following is/are common to chemiosmosis and the light-dependent reactions of photosynthesis? electron transport onl
blondinia [14]

Answer:

Both electron transport and a proton gradient

Explanation:

The process of oxidative phosphorylation in mitochondria and electron transport chain in photosynthesis undergo chemiosmosis to produce ATP molecules.

Chemiosmosis is a process where the energy utilized by the movement of proton and electrons produces ATP molecules.

Both the processes involve the movement of electrons through electron carriers where the reduced energy is utilized to drive the flow of protons through the plasma membrane. This creates a proton gradient across the plasma membrane which rotates the ATP synthase and converts the ADP molecules into ATP molecules.

Thus, the selected option is correct.

3 0
3 years ago
Other questions:
  • the speed of a nerve impulse in the human body is about 100 m/s. If you accidentally stub your toe in the dark, estimate the tim
    7·1 answer
  • What is the difference between meiosis and mitosis?
    7·1 answer
  • In virginia and some other parts of the world, water has carved vast caverns out of underground limestone deposits. water, howev
    13·1 answer
  • What are the factors that determine the level of harm an introduced chemical has on the environment?
    10·1 answer
  • There is a definite place at which the brain begins and the spinal cord ends
    13·1 answer
  • Polygenic means that most traits are controlled by ________.
    6·1 answer
  • The maximum population size that can be substained in an environment is
    11·1 answer
  • Please help it’s urgent!!!
    14·1 answer
  • Which describes the risk of biotechnology?
    15·2 answers
  • True or False. Anything that has molecules doesn’t have heat. Explain your answer.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!