For this question you should know:
1/2 = 5/10
and
4/5 = 8/10
so you can see 8/10 is greater than 5/10 so the answer is no
4/5 is greater than 1/2 :)))
i hope this is helpful
have a nice day
Using the binomial distribution, it is found that there is a 0.0012 = 0.12% probability at least two of them make it inside the recycling bin.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
With 5 shoots, the probability of making at least one is
, hence the probability of making none, P(X = 0), is
, hence:

![\sqrt[5]{(1 - p)^5} = \sqrt[5]{\frac{232}{243}}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%281%20-%20p%29%5E5%7D%20%3D%20%5Csqrt%5B5%5D%7B%5Cfrac%7B232%7D%7B243%7D%7D)
1 - p = 0.9908
p = 0.0092
Then, with 6 shoots, the parameters are:
n = 6, p = 0.0092.
The probability that at least two of them make it inside the recycling bin is:

In which:
[P(X < 2) = P(X = 0) + P(X = 1)
Then:



Then:
P(X < 2) = P(X = 0) + P(X = 1) = 0.9461 + 0.0527 = 0.9988

0.0012 = 0.12% probability at least two of them make it inside the recycling bin.
More can be learned about the binomial distribution at brainly.com/question/24863377
#SPJ1


The answer is either B, and you forgot to put in the ^2 in the answer choice, or C, and you forgot to put an x where there is a _ in the question.
Check the actual question (the one you recieved, not the one posted here) and see where the mistakes are. If f(x) = 8x - 4x - x^3, then your answer is C. However, if B is actually -x^3 + x^2 + 3x - 1, then the answer is B.
Let X be the national sat score. X follows normal distribution with mean μ =1028, standard deviation σ = 92
The 90th percentile score is nothing but the x value for which area below x is 90%.
To find 90th percentile we will find find z score such that probability below z is 0.9
P(Z <z) = 0.9
Using excel function to find z score corresponding to probability 0.9 is
z = NORM.S.INV(0.9) = 1.28
z =1.28
Now convert z score into x value using the formula
x = z *σ + μ
x = 1.28 * 92 + 1028
x = 1145.76
The 90th percentile score value is 1145.76
The probability that randomly selected score exceeds 1200 is
P(X > 1200)
Z score corresponding to x=1200 is
z = 
z = 
z = 1.8695 ~ 1.87
P(Z > 1.87 ) = 1 - P(Z < 1.87)
Using z-score table to find probability z < 1.87
P(Z < 1.87) = 0.9693
P(Z > 1.87) = 1 - 0.9693
P(Z > 1.87) = 0.0307
The probability that a randomly selected score exceeds 1200 is 0.0307
Id say B, y=-2/3+3
Hope this helps