Answer:
No balls
Step-by-step explanation:
Given:
The radius of the ball = 2 m
Height of the ball bin = 3.2 metres
Length of of the ball bin = 1 meters
Width of the ball bin = 1.5 metres
To Find:
How many balls should fit inside the bin = ?
Solution:
Step 1: Finding the volume of the ball
The volume of the ball = ![\frac{4}{3} \pi r^3](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20r%5E3)
Substituting the value,
=>![\frac{4}{3} \pi (2)^3](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20%282%29%5E3)
=>![\frac{4}{3} \pi (8)](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20%288%29)
=>![\frac{100.48}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B100.48%7D%7B3%7D)
=> 33.49
=>33.5 cubic meters
Step 2: Finding the packing space per ball
=> ![190 \% \times \text{volume of one ball}](https://tex.z-dn.net/?f=190%20%5C%25%20%5Ctimes%20%5Ctext%7Bvolume%20of%20one%20ball%7D)
=>![\frac{190}{100} \times 33.5](https://tex.z-dn.net/?f=%5Cfrac%7B190%7D%7B100%7D%20%5Ctimes%20%2033.5)
=> ![1.9 \times 33.5](https://tex.z-dn.net/?f=1.9%20%5Ctimes%2033.5)
=>
cubic meters
Step 3: Finding the volume of the container
The volume of the rectangular prism (packing box )
=> ![Length \times width \times height](https://tex.z-dn.net/?f=Length%20%5Ctimes%20width%20%5Ctimes%20height)
=>![1\times 1.5\times 3.2](https://tex.z-dn.net/?f=1%5Ctimes%201.5%5Ctimes%203.2)
=>4.8 cubic meters
Step 4: Finding the number of ball that can fit in the container
Number of ball = ![\frac{\text{ volume of the container}}{\text{ the packing space per ball}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctext%7B%20volume%20of%20the%20container%7D%7D%7B%5Ctext%7B%20the%20packing%20space%20per%20ball%7D%7D)
Number of ball = ![\frac{4.8}{63.65}](https://tex.z-dn.net/?f=%5Cfrac%7B4.8%7D%7B63.65%7D)
Number of ball = 0.07
No balls can be packed in the bock since the volume of the box is lesser than the packing space required per ball