1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
m_a_m_a [10]
3 years ago
5

a normal distribution with a mean of 85 and a standard deviation of 12. What is the proportion between 80 and 90? u =85 s =12. P

(80
Mathematics
1 answer:
Neko [114]3 years ago
4 0
I think the answer is 44
You might be interested in
Find the student’s error in solving the following inequality.
Mars2501 [29]

Answer:

The correct option is:

The student should have switched the direction of the inequality sign to get –5> x for a final answer

Step-by-step explanation:

The students has made a mistake in the 3rd step.

We know that when we multiply or divide any negative number on both sides of the inequality, the sign of inequality  reverse its direction.

In step 3 the student divided 25 by -5 but did not  switch direction of the inequality sign.

Therefore the correct option is: The student should have switched the direction of the inequality sign to get –5> x for a final answer

5 0
3 years ago
The ANSWER is what I need to know.
tensa zangetsu [6.8K]
They both represent the expression, because when simplified the expression equals 8x+4, but you could also write it like 2(3x+2)+2x
8 0
3 years ago
Mark can type 20 words per minute. Carol can type 22 words per minute. Mark starts typing at 1:00 pm and Carol starts typing 6 m
Anna11 [10]

Answer:

C. 498

Step-by-step explanation:

8 0
3 years ago
Help with my algebra homework.
just olya [345]
Q1. The answer is \frac{(x-4)(x-4)}{(x+3)(x+1)}= \frac{ x^{2}-4x-4x+16}{ x^{2} +x+3x+3} = \frac{ x^{2} -8x+16}{ x^{2} +4x+3}
\frac{ x^{2} -16}{ x^{2} +5x+6} / \frac{ x^{2} +5x+4}{ x^{2} -2x-8} = \frac{ x^{2} -16}{ x^{2} +5x+6}* \frac{x^{2} -2x-8}{ x^{2} +5x+4}
Now, factorise the numerators and denominators:
x² - 16 = x² - 4² = (x + 4)(x - 4)
x² + 5x + 6 = x² + 2x + 3x + 2*3 = x(x+2) + 3(x+2) = (x + 2)(x + 3)
x² - 2x - 8 = x² + 2x - 4x - 2*4 = x(x+2) - 4(x+2) = (x + 2)(x - 4)
x² + 5x + 4 = x² + x + 4x + 4*1 = x(x+1) + 4(x+1) = (x + 1)(x + 4)

\frac{ x^{2} -16}{ x^{2} +5x+6}* \frac{x^{2} -2x-8}{ x^{2} +5x+4}= \frac{(x+4)(x-4)}{(x+2)(x+3)} * \frac{(x+2)(x-4)}{(x+1)(x+4)}
Now, cancel out some factors:
\frac{(x+4)(x-4)}{(x+2)(x+3)} * \frac{(x+2)(x-4)}{(x+1)(x+4)}= \frac{(x-4)(x-4)}{(x+3)(x+1)}=  \frac{ x^{2}-4x-4x+16}{ x^{2} +x+3x+3} = \frac{ x^{2} -8x+16}{ x^{2} +4x+3}


Q2. The answer is \frac{7(a-7)}{(a-8)(a+8)}
Since a² - b² = (a-b)(a+b), then a²- 64 = a² - 8² = (a-8)(a+8).
\frac{7}{a+8} +  \frac{7}{ a^{2} -64} = \frac{7}{a+8} +  \frac{7}{ (a+8)(a-8)}= \frac{7(a-8)}{(a+8)(a-8)} +  \frac{7}{ (a+8)(a-8)}= \frac{7(a-8)+7}{ (a+8)(a-8)}
= \frac{7(a-8)+7*1}{(a+8)(a-8)} =\frac{7(a-8+1)}{(a+8)(a-8)} =\frac{7(a-7)}{(a+8)(a-8)}


Q3. The answer is \frac{7(3a-4)}{(a-6)(a+8)}
\frac{ a^{2} -2a-3}{ a^{2}-9a+18 }-  \frac{a^{2} -5a-6}{ a^{2}+9a+8 }  = \frac{a^{2}+a-3a-3*1}{a^{2}-3a-6a+3*6} - \frac{a^{2}-a-6a-6*1}{a^{2}+a+8a+8*1}
= \frac{a(a+1)-3(a+1)}{a(a-3)-6(a-3)}- \frac{a(a+1)-6(a+1)}{a(a+1)+8(a+1)}= \frac{(a+1)(a-3)}{(a-6)(a-3)} - \frac{(a+1)(a-6)}{(a+1)(a+8)}
Now, cancel out some factors:
\frac{(a+1)(a-3)}{(a-6)(a-3)} - \frac{(a+1)(a-6)}{(a+1)(a+8)}= \frac{a+1}{a-6} - \frac{a-6}{a+8}
\frac{a+1}{a-6} - \frac{a-6}{a+8}= \frac{(a+1)(a+8)}{(a-6)(a+8)} -\frac{(a-6)(a-6)}{(a-6)(a+8)} =\frac{(a+1)(a+8)-(a-6)(a-6)}{(a-6)(a+8)}
= \frac{ a^{2} +9a+8- a^{2} +12-36}{(a-6)(a+8)} =\frac{9a+8+12-36}{(a-6)(a+8)} =\frac{21a-28}{(a-6)(a+8)} =\frac{7(3a-4)}{(a-6)(a+8)}


Q4. The answer is \frac{4x}{(x+3)(1+3x)}=\frac{4x}{ x^{2} +10x+3}
\frac{4}{x+3} / (\frac{1}{x}+3 )=\frac{4}{x+3} / (\frac{1}{x}+ \frac{3x}{x})=\frac{4}{x+3} / (\frac{1+3x}{x})= \frac{4}{x+3} * \frac{x}{1+3x} = \frac{4x}{(x+3)(1+3x)}
\frac{4x}{(x+3)(1+3x)}= \frac{4x}{x+3 x^{2} +3+9x}= \frac{4x}{ x^{2} +10x+3}


Q5. The answer is x = 6
\frac{-2}{x} +4= \frac{4}{x} +3
4-3= \frac{4}{x}- \frac{-2}{x}
1 = \frac{4-(-2)}{x}
1= \frac{4+2}{x}
1= \frac{6}{x}
x = 6
Let's check the solution:
Since: \frac{-2}{x} +4= \frac{4}{x} +3
Then: \frac{-2}{6}+4 = \frac{4}{6} +3
           - \frac{1}{3}+ \frac{4*3}{3}= \frac{2}{3} + \frac{3*3}{3}
           - \frac{1}{3} + \frac{12}{3} =  \frac{2}{3} + \frac{9}{3}
           \frac{-1+12}{3} = \frac{2+9}{3}
           \frac{11}{3} = \frac{11}{3}
Thus, the solution is correct
6 0
3 years ago
Answer the other following question.
pychu [463]

Given:

L = W - 4

P = 2L + 2W

We can substitute 2L for 2(W - 4) = 2W - 8

So:

2W - 8 + 2W = P

P = 4W - 8

Answer is 4. 4W-8

5 0
3 years ago
Other questions:
  • If a graph of a set has an open circle on 1/2 and an arrow pointing to the right, then which of the following numbers is in the
    13·2 answers
  • What is the best for the total weight of these cold meats 1 7/8 of bologna 1 1/2 pounds of ham and 7/8 of roast beef ?
    6·1 answer
  • Please help me <br>choose the corect one​
    13·1 answer
  • The diameter of the average cell in the human body is 1 x 10-5 meters. The diameter of a grain of sand is about 2 x 10-4 meters.
    15·1 answer
  • Given that f:x→ax+b and f²:x→4x+9, find the value of the constants a and b​
    11·1 answer
  • Can someone send me the Proportional Relationships Flocabulary AK?
    8·1 answer
  • Solve: 2 In 3 = In(x-4)
    9·1 answer
  • While walking in his neighborhood, Donnie found 2 dimes and 2 pennies on the ground . What percent of a dollar did Donnie find ?
    15·2 answers
  • Square root 30 times square root 10
    10·1 answer
  • Three out of every 20 students in ms. jones’ Math class earned a grade of A. What percent of the students earned a grade of A?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!