Answer:
-3x²-5xeˣ-eˣ
-3eˣx²-11eˣx-6eˣ
Step-by-step explanation:
I'm going to go by the picture and not what you wrote in your title.
To find the derivative of this we have to apply the product rule
(a*b)'=
a'*b+a*b'
We plug in our numbers and get
(-3x²+x-2)'*eˣ+(-3x²+x-2)*eˣ'
Now we can evaluate the derivatives and simplify
(-3x²+x-2)'= -6x+1
eˣ'=eˣ
which means we have
(-6x+1)*eˣ+(-3x²+x-2)*eˣ
Simplify
-6xeˣ+eˣ-3x²eˣ+xeˣ-2eˣ
Combine like terms
-3x²eˣ-5xeˣ-eˣ
Now we just need to find the derivative of this
We can apply the same product rule as we did before
(-3x²eˣ)'
Let's start by factoring out the -3 to get
-3(x²eˣ)'
which is equal to
-3(x²eˣ'+x²'eˣ)
Compute this and get
-3(x²eˣ+2xeˣ)= -3x²eˣ-6xeˣ
Now let's find the derivative of the second part
(-5xeˣ)'
-5(x'eˣ+xeˣ')
-5(eˣ+xeˣ)
-5eˣ-5xeˣ
Which means we have
(-3x²eˣ-6xeˣ)+(-5eˣ-5xeˣ)-eˣ
Combine like terms and get
-3eˣx²-11eˣx-6eˣ
The correct answer is B)

.
The denominator of the exponent is the root we are taking. The numerator is the exponent of the radicand. This means 3 will be the denominator, since it is a cubed root, and 2 will be the numerator of m while 5 will be the numerator of n.
For the axis of symmetry it will be -b/2a but in this case the axis of symmetry is going to be y=4. the x intercept will be the roots (2,0) and (6,0) and for the y intercept it will be (0,3) since the parabola crosses the y axis at (0,3)
That’s odd. I would think so.