Answer:
32x+32
Step-by-step explanation:
In the distributive property, you have to multiply the thing outside the parenthesis to each term in the parenthesis. -4*-8x=32x and -4*-8=32, so the answer would be 32x+32
9/6 = 1.5
24/1.5 = 16
triangle DEF has a primeter of 16 inches
1/2 + 1/2 =1 cup + 1/2 + 1/2= 2 cups + 1/2= 2 1/2
How many 1/2 you see? 5!!
Hey There!!
The answer to this is: A quadrilateral has vertices A(3, 5), B(2, 0), C(7, 0), and D(8, 5). Which statement about the quadrilateral is true?" Line BC is parallel to line AD because their slopes is equal i.e. (0 - 0) / (7 - 2) = (5 - 5) / (8 - 3) which gives 0 / 5 = 0 / 5 giving that 0 = 0. We check whether line AB is parallel to line CD. Slope of line AB is given by (0 - 5) / (2 - 3) = -5 / -1 = 5. Slope of line CD is given by (5 - 0) / (8 - 7) = 5 / 1 = 5 We have been able to prove that the opposite sides of the quadrilateral are parallel which means that the quadrilateral is not a trapezoid. Next we check whether the length of the sides are equal. Length of line AB is given by sqrt[(0 - 5)^2 + (2 - 3)^2] = sqrt[(-5)^2 + (-1)^2] = sqrt(25 + 1) = sqrt(26) Length of line BC is given by sqrt[(0 - 0)^2 + (7 - 2)^2] = sqrt[0^2 + 5^2] = sqrt(25) = 5 Length of line CD is given by sqrt[(5 - 0)^2 + (8 - 7)^2] = sqrt[5^2 + 1^2] = sqrt(25 + 1) = sqrt(26) Length of line DA is given by sqrt[(5 - 5)^2 + (8 - 3)^2] = sqrt[0^2 + 5^2] = sqrt(25) = 5 Thus, the length of the sides of the quadrilateral are not equal but opposite sides are equal which means that the quadrilateral is not a rhombus. Finally, we check whether adjacent lines are perpendicular. Recall the for perpendicular lines, the product of their slopes is equal to -1. Slope of line AB = 5 while slope of line BC = 0. The product of their slopes = 5 x 0 = 0 which is not -1, thus the adjacent sides of the quadrilateral are not perpendicular which means that the quadrilateral is not a rectangle. Therefore, ABCD is a parallelogram with non-perpendicular adjacent sides. Thus, For (option A).
Hope It Helped!~ ♡
ItsNobody~ ☆