People's daily experiences can contribute to their belief that earth/ species do not change because we are changing with it as it is happening. Also the changes happen gradually so you can't constantly see to believe it.
Glycogen reserves can release glucose for cellular respiration. glycogen reserves are typically found in the muscles and liver.
- The liver and muscles contain the body's "quick" source of energy, known as glycogen stores.
- They go through further metabolism after being converted to glucose.
- After that, glucose can be further digested to release energy both aerobically and anaerobically.
<h3>Glycogen reserves: what are they?</h3>
- When the body doesn't need to consume the glucose for energy, the liver and muscles store it.
- This kind of stored glucose, which is made up of many connected glucose molecules, is known as glycogen.
<h3>How long are glycogen reserves good for?</h3>
- Utilizing the form, you can learn more about nutrition and glycogen.
- But it's helpful to know that once glycogen stores are exhausted, it will take at least 48 hours to fully refill them.
- This necessitates rest throughout the recovery period and a high-carbohydrate diet (60–70% of the energy must come from carbohydrates).
To learn more about glycogen reserves visit:
brainly.com/question/11478490
#SPJ4
Answer:
cellular function.
Explanation:
I can't really explain. That easily. I don't remember much of this subject.
Answer:
A proton gradient is generated by the transport of protons into the thylakoid lumen.
Protons move from the thylakoid lumen to the stroma through ATP synthase, producing ATP.
Explanation:
During photosynthesis, the environment is made acidic inside the lumen i.e. H⁺ are pumped into thylakoid lumen from stroma as a result of which more H⁺ are present in the thylakoid lumen as compared to stroma. It happens during light dependent reaction of photosynthesis. The concentration of H⁺ is already higher in lumen and transfer of more and more H⁺ from stroma increases the concentration of H⁺ even more leading to generation of a potential gradient. These H⁺ subsequently tend to move freely from lumen to stroma via "reverse pumps known as ATP synthase". The reason why these are known as reverse pumps is because pumps usually move particles from lower to higher concentration which is an active movement i.e. not natural so such movement requires energy. Naturally particles move from higher to lower concentration gradient until the concentration becomes equal on both the sides but pumps act opposite of this natural process and move particles from lower to higher concentration and utilize energy to do it. But here H⁺ are moving from higher to lower concentration which occurs naturally so ATP synthase rather than using energy tend to generate energy and this free energy is used to generate ATP from ADP & Pi (inorganic phosphate).
The answer is C. Population size