Answer:
Yes, A KLP can be reflected across the line containing KP and then translated so that Pis mapped to M.
Step-by-step explanation:
The figure shows two congruent by HA theorem (they have congruent hypotenuses and a pair of congruent angles adjacent to the hypotenuses) triangles KLP and QNM.
A rigid transformation is a transformation which preserves lengths. Reflection, rotation and translation are rigit transformations.
If you reflect triangle KLP across the leg KP and translate it up so that point P coincides with point M , then the image of triangle KLP after these transformations will be triangle QNM.
Answer: x-6
Explanation: x^2 is a DOTS, or difference of two squares. 36 is a perfect square and x^2 is a perfect square, and you are finding the difference. Therefore, you can do (x+6)(x-6). This works with any number. If there was x^2-16, it could be factored to (x+4)(x-4)
Answer:
Step-by-step explanation:
Combine like terms. Like terms have same variable with same power
a) (2xy + 4x) + (15xy - 5x) = <u>2xy + 15xy</u> +<u> 4x - 5x</u>
= 17xy - x
b) (6a + 4b² - 3) + (3b² - 5) = 6a + <u>4b² + 3b²</u> <u>- 3 - 5 </u>
= 6a + 7b² - 8
c) (4x³ - 3x² +4x) + (8x² - 5x ) = 4x³ <u>- 3x² + 8x²</u> <u>+ 4x - 5x</u>
= 4x³ + 5x² - x
d) (7b - 6a + 9y) - (12b + 5a - 2y) =
In subtraction, add the additive inverse of (12b + 5a - 2y)
additive inverse = - 12b - 5a + 2y
(7b - 6a + 9y) - (12b + 5a - 2y) = 7b - 6a + 9y -12b -5a + 2y
= 7b - 12b -6a - 5a + 9y + 2y
= -5b - 11a + 11y
e) (2x² + 7x - 2 + 9y) - (13x + 4x² + 5 - 6y)
Additive inverse of 13x + 4x² + 5 - 6y = -13x + 4x² - 5 + 6y
(2x² + 7x - 2 + 9y) - (13x + 4x² + 5 - 6y)= 2x² + 7x - 2 + 9y -13x - 4x² -5 +6y
= 2x² - 4x² + 7x -13x -2 - 5 + 9y + 6y
= -2x² - 6x - 7 + 15y
Answer:
1
Step-by-step explanation:
6 ÷ 2(1 +2)
6 ÷ (2 + 4)
6 ÷ 6 = 1