Problem 1
<h3>Answer: False</h3>
---------------------------------
Explanation:
The notation (f o g)(x) means f( g(x) ). Here g(x) is the inner function.
So,
f(x) = x+1
f( g(x) ) = g(x) + 1 .... replace every x with g(x)
f( g(x) ) = 6x+1 ... plug in g(x) = 6x
(f o g)(x) = 6x+1
Now let's flip things around
g(x) = 6x
g( f(x) ) = 6*( f(x) ) .... replace every x with f(x)
g( f(x) ) = 6(x+1) .... plug in f(x) = x+1
g( f(x) ) = 6x+6
(g o f)(x) = 6x+6
This shows that (f o g)(x) = (g o f)(x) is a false equation for the given f(x) and g(x) functions.
===============================================
Problem 2
<h3>Answer: True</h3>
---------------------------------
Explanation:
Let's say that g(x) produced a number that wasn't in the domain of f(x). This would mean that f( g(x) ) would be undefined.
For example, let
f(x) = 1/(x+2)
g(x) = -2
The g(x) function will always produce the output -2 regardless of what the input x is. Feeding that -2 output into f(x) leads to 1/(x+2) = 1/(-2+2) = 1/0 which is undefined.
So it's important that the outputs of g(x) line up with the domain of f(x). Outputs of g(x) must be valid inputs of f(x).
Answer:
A
Step-by-step explanation:
Let
x = the number of phone available
If it would require 8 more phones, then the total number of phones will be x + 8.
A company hired an additional 12 employees, and every employee needed a phone, then
x + 8 = 12
x = 4
This means 4 phones were available (and 8 more needed to total in 12 phones for 12 new employees)
Hence, correct option is option A.
The answer is 474 i believe
Answer:
See below.
Step-by-step explanation:
The answer is D. M and O are congruent, but that is not an option, so the focus goes towards M and N. M and N are similar, but are not congruent.
-hope it helps
Answer:
Its 5
Step-by-step explanation:
-3 * 5 = -15 , i.e smaller than 15.