1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rus_ich [418]
3 years ago
15

Which expression is equivalent to 15a^9b^4 over 5a^5b?

Mathematics
1 answer:
kkurt [141]3 years ago
3 0
If you would like to solve 15a^9b^4 / <span>5a^5b, you can calculate this using the following steps:

</span>15a^9b^4 / <span>5a^5b = 3a^(9-5)b^(4-1) = 3a^4b^3
</span>
The correct result would be <span>D. 3a^4b^3.</span>
You might be interested in
Help me with number 2 I need help fast with the right answer with showing work
Anvisha [2.4K]

Volume of a cylinder is defined as:

v = volume

r = radius

h = height.

V = \pi(r^2)h

In this problem,

v = 1,356.48 in^3

r = 6 in

h = ?

Plug our numbers into the volume formula above.

1,356.48 in^3 = \pi(6^2)h

Divide both sides by \pi(6^2) to isolate variable h

12.0 = h

The height of the cylinder is 12.0 inches

4 0
3 years ago
1. Write 2.96 as a mixed number or fraction in simplest form? 2. During a soccer game, Erin scored 1 out of 2 goals attempted. L
liubo4ka [24]
1. 2.96 = 2 96/100 = 2 24/25 ( thats 2 and 24/25)
2. 1 out of 2 = 1/2 (Erin)
     6 out of 8 = 3/4 (Lauren)
     Lauren is more successful because 3/4 is greater then 1/2
7 0
3 years ago
Read 2 more answers
5(3r+11)=85
raketka [301]

Answer:

r = 2

Step-by-step explanation:

Actually, there are 2 ways to solve this equation.

The first one:

<em>5</em><em>(</em><em> </em><em>3</em><em>r</em><em> </em><em>+</em><em> </em><em>1</em><em>1</em><em>)</em><em> </em><em>=</em><em> </em><em>8</em><em>5</em>

<em>so </em><em>here</em><em>, </em><em> </em><em>you </em><em>have </em><em>to </em><em>multiply </em><em>5</em><em> </em><em>by </em><em>(</em><em> </em><em>3</em><em>r</em><em> </em><em>+</em><em> </em><em>1</em><em>1</em><em>)</em><em> </em><em>and </em><em>maintain </em><em>the </em><em>8</em><em>5</em>

<em>1</em><em>5</em><em>r</em><em> </em><em>+</em><em> </em><em>5</em><em>5</em><em> </em><em>=</em><em> </em><em>8</em><em>5</em><em>.</em><em>.</em><em>.</em><em> </em><em> </em><em> </em><em>now </em><em>put </em><em>the </em><em>like </em><em>terms </em><em>together</em><em>.</em><em> </em><em>In </em><em>other </em><em>words</em><em>, </em><em>just </em><em>transpose </em><em>5</em><em>5</em><em> </em><em>to </em><em>the </em><em>other </em><em>side. </em>

<em>1</em><em>5</em><em>r</em><em> </em><em>=</em><em> </em><em>8</em><em>5</em><em> </em><em>-</em><em>5</em><em>5</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em> </em><em>remember </em><em>that </em><em>the </em><em>sign </em><em>of </em><em>5</em><em>5</em><em> </em><em>will </em><em>change </em><em>from </em><em>positive </em><em>to </em><em>negative </em>

<em>1</em><em>5</em><em>r</em><em> </em><em>=</em><em> </em><em>3</em><em>0</em><em>.</em><em>.</em><em>.</em><em>.</em><em> </em><em>now </em><em>divide </em><em>both </em><em>sides </em><em>by </em><em> </em><em>1</em><em>5</em>

<em>1</em><em>5</em><em>r</em><em>/</em><em>1</em><em>5</em><em> </em><em>=</em><em> </em><em>3</em><em>0</em><em>/</em><em>1</em><em>5</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em><u>r </u></em><em><u>=</u></em><em><u> </u></em><em><u>2</u></em>

The second method :

<em>5</em><em> </em><em>(</em><em> </em><em>3</em><em>r</em><em> </em><em>+</em><em> </em><em>1</em><em>1</em><em>)</em><em> </em><em>=</em><em> </em><em>8</em><em>5</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em> </em><em>divide </em><em>both </em><em>sides </em><em>by </em><em>5</em>

<em>5</em><em> </em><em>(</em><em>3</em><em>r</em><em> </em><em>+</em><em> </em><em>1</em><em>1</em><em>)</em><em> </em><em>/</em><em> </em><em>5</em><em> </em><em>=</em><em> </em><em>8</em><em>5</em><em>/</em><em>5</em>

<em>3</em><em>r</em><em> </em><em>+</em><em> </em><em>1</em><em>1</em><em> </em><em>=</em><em> </em><em>1</em><em>7</em>

<em>3</em><em> </em><em>r </em><em>=</em><em> </em><em>1</em><em>7</em><em> </em><em>-</em><em> </em><em>1</em><em>1</em>

<em>3</em><em>r</em><em> </em><em>=</em><em> </em><em>6</em><em> </em>

<em>r </em><em>=</em><em> </em><em>2</em>

<em>I </em><em>hope </em><em>this </em><em>helps. </em><em>If </em><em>you </em><em>don't </em><em>quite </em><em>get </em><em>it, </em><em> </em><em>please </em><em>go </em><em>through </em><em>until </em><em>you </em><em>get </em><em>it. </em><em> </em><em>Have </em><em>a </em><em>nice </em><em>day </em>:-)

5 0
3 years ago
Read 2 more answers
Michael's dad is 30 years of age. He is 2 years more than four times Michaels age m. Write and solve a two-step equation to dete
Ksenya-84 [330]

Answer:

The two step equation that we can use to find michael's age is x = (f-2)/4 where f = 30. So Michael is 7 years old.

Step-by-step explanation:

In order to solve this problem we will attribute variables to the ages of Michael and his father. For his father age we will attribute a variable called "f" and for Michael's age we will attribute a variable called "x". The first information that the problem gives us is that Michael's dad is 30 years of age, so we have:

f = 30

Then the problem states that the age of the father is 2 years "more" than four "times" Michaels age. The "more" implies a sum and the "times" implies a product, so we have:

f = 2 + 4*x

We can now find Michael's age, for that we need to isolate the "x" variable. We have:

f - 2 = 4*x

4*x = f - 2

x = (f-2)/4

x = (30 - 2)/4 = 7 years

The two step equation that we can use to find michael's age is x = (f-2)/4 where f = 30. So Michael is 7 years old.

7 0
4 years ago
Read 2 more answers
1. Determine whether the regular hexagon has reflection symmetry, rotation symmetry, both, or neither. If it has reflection symm
lana [24]
The regular hexagon has both reflection symmetry and rotation symmetry.

Reflection symmetry is present when a figure has one or more lines of symmetry. A regular hexagon has 6 lines of symmetry. It has a 6-fold rotation axis.

http://prntscr.com/96ow2n

Rotation symmetry is present when a figure can be rotated (less than 360°) and still look the same as before it was rotated. The center of rotation is a point a figure is rotated around such that the rotation symmetry holds. A regular hexagon can be rotated 6 times at an angle of 60°

http://prntscr.com/96oxjx


3 0
4 years ago
Other questions:
  • Cathy is flying a kite. The kite has an angle of depression of 47 degrees and is flying on 35 feet of string. If Cathy is holdin
    12·1 answer
  • Assume that the readings on the thermometers are normally distributed with a mean of 0 degrees and standard deviation of 1.00°C.
    14·1 answer
  • An employee earns $175 for 15 hours work.<br> Find the constant of variation.
    7·1 answer
  • Through 2,4 parallel to x=0 PLEASE HELP ME
    11·1 answer
  • What is the difference of 3ab and 7bc
    7·2 answers
  • QUESTION 4
    14·2 answers
  • Timothy and Jonathan work at two different dog - grooming salons in their town. The box plots represent the number of dogs their
    11·1 answer
  • Help mee please its math
    14·1 answer
  • Need help :::::::::::::::::
    8·1 answer
  • Match the examples with the properties of equalities:
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!