1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
koban [17]
3 years ago
14

Please help!!!!!!!!!

Mathematics
1 answer:
dusya [7]3 years ago
8 0

Answer:

57 degree

Step-by-step explanation:

AB^2 = AC^2+CB^2-2ACCBcosC

AB=25cm

BC^2=AB^2+AC^2-2ABACcosA

A=56.6 degree

You might be interested in
You’ve been saving your money to buy a guitar. You have 3 ten-dollar bills, 8 five-dollar bills, and 26 one-dollar bills. You al
lana66690 [7]

Answer: $147.84

I had the same question and it is $147.84.

8 0
3 years ago
Read 2 more answers
How do u work out <br> 65% of 8700
lidiya [134]

First off, you have to make 65 % into an actual number, which is 0.65 (every time you want to convert percentages into numbers, you have to divide that by 100)

Now

0.65 * 8700 = 5655

Answer:  5655

5 0
2 years ago
What is 0.8 and 5/8 and 0.01 in a percentage
vovikov84 [41]

The correct answers are:

__________________________

   1)      " 0.8  =  80 % "  .

__________________________

   2)      " \frac{5}{8}  =  62. 5 % " .

__________________________

   3)     " 0.01  =  1 % " .

__________________________

Explanation:

To solve:

__________________________

Write the numbers:  " 0.8 " ;   " 5/8 " ;  <u><em>and</em></u>:  " 0.01 " ;  as "percentages" .

To write a "number" as a "percentage" :

  • You take the "number" ;
  • Multiply that "number"  by "100"  ;   <em><u>AND</u></em>:
  • add a  "percent symbol";

                 →   that is:  " % " ;

                 → to denote the "percentage" ;  or, "parts per hundred" .

__________________________

Let us start with the number:  " 0.8 " .

→  " 0.8 "  *  100  =  ?

→   Take the decimal point, and move it 2 decimal spaces to the right; since we are "multiplying" by "100" (which has "2 zeros")  ;

→    0.8  * 100 = ?  ;   If we move the decimal space "one space" forward, we have:  "8" .  If we move the decimal space yet "one more space forward" ;

      →  "8."  to:   " 80 " .

→ Then we add the "percent symbol":

     →  " 80 "  ;   to:  " 80 % "

Answer:  " 0.8  =  80 % " .

_________________________

Other method:

_________________________

→ Note that "percentage" means:  "parts per hundred" :

→ Given:  " 0.8 " ;  Convert to a "percentage" :

→  " 0.8  = \frac{8}{10} " ;

        →  " \frac{8}{10}  = \frac{?}{100} " ;

        →   Find the "?" value.

        →  To do so; look at the "denominators" :

                 →  " 10 * (what) = 100 " ?

                 →  Divide each side by "10" ;

                 → " [10 * what ] / 10  = 100 / 10 " ;

                 →  to get:  

                 →  " [what] " =  "10" .        

                 →    So;   " \frac{8}{10}  = \frac{?}{100} " ;

                 →    If  "{10 * 10 = 100}" ;  then, "{8 * 10 = 80}" .

                 →    So;  " {?} " =  " 80 " .

                 →    So;    " \frac{8}{10}  = \frac{80}{100} " ;

                 →    As such:   " 0.8 "    =  " (\frac{80}{100}) " ;

                                                       =   " 80 "   parts per hundred  ;

                                                       =   " 80  % " .

Answer: " 0.8 "   =   80 %  "  .                                    

__________________________

Now, let convert:  "(\frac{5}{8})" ; into a percentage.

→  Multiply by "100" ;

→  "(\frac{5}{8})"   *   100  ;

→     "(\frac{5}{8})    *   (\frac{100}{1})"  ;

→     "(\frac{(5*100)}{(8*1)})"   ;

→   "(\frac{500}{8})"  ;

   =    " { 500 ÷ 8 } "  ;

  =   " 62. 5 "  ;

→  Now, add the "percent symbol" ;

    →    "  62. 5 "   ;    →  62. 5 % " .

Answer:  " \frac{5}{8}  =  62. 5 % " .

__________________________

Now, let us finish with our last "given value":

Convert:  " 0.01 " ;  to a "percentage" :

→  " 0.01 "  *  100  =  ?

→   Take the decimal point, and move it 2 decimal spaces to the right; since we are "multiplying" by "100" (which has "2 zeros")  ;

→    0.01  * 100 = ?  ;   If we move the decimal space "2 spaces forward" , we have:  " 1 " .  

As such:

      →  " 0.01 "  to:   " 1 " .

→ Then we add the "percent symbol":

     →  " 1 "  ;   to:  " 1 % "  .

Answer:   " 0.01  =  1 % " .

__________________________

Hope this answer is of help to you.

Best wishes!

__________________________

5 0
3 years ago
Find \(\int \dfrac{x}{\sqrt{1-x^4}}\) Please, help
ki77a [65]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/2867785

_______________


Evaluate the indefinite integral:

\mathsf{\displaystyle\int\! \frac{x}{\sqrt{1-x^4}}\,dx}\\\\\\ \mathsf{=\displaystyle\int\! \frac{1}{2}\cdot 2\cdot \frac{1}{\sqrt{1-(x^2)^2}}\,dx}\\\\\\ \mathsf{=\displaystyle \frac{1}{2}\int\! \frac{1}{\sqrt{1-(x^2)^2}}\cdot 2x\,dx\qquad\quad(i)}


Make a trigonometric substitution:

\begin{array}{lcl}&#10;\mathsf{x^2=sin\,t}&\quad\Rightarrow\quad&\mathsf{2x\,dx=cos\,t\,dt}\\\\&#10;&&\mathsf{t=arcsin(x^2)\,,\qquad 0\ \textless \ x\ \textless \ \frac{\pi}{2}}\end{array}


so the integral (i) becomes

\mathsf{=\displaystyle\frac{1}{2}\int\!\frac{1}{\sqrt{1-sin^2\,t}}\cdot cos\,t\,dt\qquad\quad (but~1-sin^2\,t=cos^2\,t)}\\\\\\&#10;\mathsf{=\displaystyle\frac{1}{2}\int\!\frac{1}{\sqrt{cos^2\,t}}\cdot cos\,t\,dt}

\mathsf{=\displaystyle\frac{1}{2}\int\!\frac{1}{cos\,t}\cdot cos\,t\,dt}\\\\\\&#10;\mathsf{=\displaystyle\frac{1}{2}\int\!\f dt}\\\\\\&#10;\mathsf{=\displaystyle\frac{1}{2}\,t+C}


Now, substitute back for t = arcsin(x²), and you finally get the result:

\mathsf{\displaystyle\int\! \frac{x}{\sqrt{1-(x^2)^2}}\,dx=\frac{1}{2}\,arcsin(x^2)+C}          ✔

________


You could also make

x² = cos t

and you would get this expression for the integral:

\mathsf{\displaystyle\int\! \frac{x}{\sqrt{1-(x^2)^2}}\,dx=-\,\frac{1}{2}\,arccos(x^2)+C_2}          ✔


which is fine, because those two functions have the same derivative, as the difference between them is a constant:

\mathsf{\dfrac{1}{2}\,arcsin(x^2)-\left(-\dfrac{1}{2}\,arccos(x^2)\right)}\\\\\\&#10;=\mathsf{\dfrac{1}{2}\,arcsin(x^2)+\dfrac{1}{2}\,arccos(x^2)}\\\\\\&#10;=\mathsf{\dfrac{1}{2}\cdot \left[\,arcsin(x^2)+arccos(x^2)\right]}\\\\\\&#10;=\mathsf{\dfrac{1}{2}\cdot \dfrac{\pi}{2}}

\mathsf{=\dfrac{\pi}{4}}         ✔


and that constant does not interfer in the differentiation process, because the derivative of a constant is zero.


I hope this helps. =)

6 0
3 years ago
What describes the number and type of the roots of the equation 4x+7=0
Kaylis [27]

Answer:

D : One Real Root

Step-by-step explanation:

Isolate "4x" by subtracting 7 from both sides.

So we get

4x = -7

Then we divide each side by 4 to get -7/4

x = -7/4 so there is only one real root.

5 0
3 years ago
Other questions:
  • Which number checks the equation 6x = x + 50?
    10·1 answer
  • What is the addtive inverse of (-25)​
    13·2 answers
  • Whats 1+1+3 PLZ HELP URGENT
    6·1 answer
  • Greta jumps up 2 feet into the air. Her potential energy is 60 Joules. Her kinetic energy is 40 Joules. What is the total mechan
    9·2 answers
  • You can buy 3 T-shirts for $24. Write a proportion that gives the cost c of buying 7 T-shirts.
    14·1 answer
  • Use the GCF and the distributive property to express the sum as a product 35+25
    10·1 answer
  • What is the Evaluation
    5·1 answer
  • Abby needs 8.75 bags of carrots two times a month to feed the horses. How many bags will she need to feed the horses for 7 month
    7·1 answer
  • Given the statement -12 ≤ -15, which of the following is correct?
    8·1 answer
  • Carrie was home when it started snowing at noon. Carrie measured the amount of snow that fell each hour from 1 p.m. to 7 p.m. Sh
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!