What figure is there, nothing is shown. Name?
I plugged it in to a truncated square pyramid calculator and got v=76
the formula for this shape is V=1/3(A squared+AB+B squared)H.
<h2><u>Answer</u><u> </u><u>:</u></h2>

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀

<h2><u>To </u><u>find </u><u>:</u></h2>
- Total number of Floors in dool house
<u>➜</u><u> </u><u>Therefore</u><u> </u><u>,</u><u> </u><u>Total</u><u> </u><u>number</u><u> </u><u>of </u><u>floors</u><u> </u><u>can </u><u>be </u><u>find </u><u>out</u><u> </u><u>by </u><u>dividing</u><u> </u><u>the </u><u>total</u><u> </u><u>height</u><u> </u><u>of </u><u>dollhouse</u><u> </u><u>by </u><u>the </u><u>length</u><u> </u><u>of </u><u>one </u><u>floor</u>


⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀
Let event A be the coin landing on heads and let event B be rolling a 5 on a six-sided die.
Events A and B are independent if, and only if:

It is given in the question that the above condition for independence is met.
Also A and B are independent if:
P(A|B) = P(A)
P(A) = 1/2
Therefore the probability of flipping a coin and it landing on heads, given that you rolled a 5 on a six-sided die is 1/2. The two events are independent.
Answer:
esfgkjfvgghhhhhhjjhhhhhgfffghjjkkokkkjrdgsgegfggy