Answer:
If the absolute value expression is not equal to zero, the expression inside an absolute value can be either positive or negative. So, there can be at most two solutions. Looking at this graphically, an absolute value graph can intersect a horizontal line at most two times.
Answer:
Option D.
Step-by-step explanation:
- First, the you need ti understand that the triangle is an isosceles right angled triangle. In other words, the base and height are equal in length. The third side is the slide. This is the longest side.
- Next, we know that the formula for calculating the area of a right angled triangle is given by:
A = 1/2 (base × perpendicular height)
- The perpendicular height is equal to the base. Let's say the base is <em>x</em>. It means that the height is also x, since height = base.
- Therefore, the formula will be:
A = 1/2 (x.x)
=1/2 (x²)
32 = 1/2 (x²)
Multiplying both sides by 2 gives:
32×2 = x²
64 = x²
8 = x
To find the third side, we use the Pythagoras theorem:
C² = A² + B²
= 8² + 8²
= 128
C = √128
= 8√2
However, the answer will not be exact, so we multiply the length of the base and height by 2. This gives x = 16 (Length of base = length of height)
Repeating the steps above gives C = √ (16)² + (16)²
= √256
This corresponds to option D.
I believe the next one would be 13.2 because if you add 8.4 to -6.4 it gets 4.8 so you just do the same thing
(0, 9) represents the y-intercept of the graph.
Since the slope is 1/3, this means that y will rise 1 for every 3 that x runs.
The points that can be used to make a line in this graph are (3, 10) and (6, 11).
Answer:
THEY DIDN'T IT WAS BECAUSE THEY MADE UP A FAKE RUMER AND HAD TO MAKE IT LOOK REAL
Step-by-step explanation: