The interval where the function is nonlinear and decreasing is 0 < x < 4
<h3>How to determine the interval where the function is nonlinear and decreasing?</h3>
The straight lines on the graph are the intervals where the graph is linear
This means that the straight lines on the graph will not be considered
Considering the curve, the graph decrease from x = 0 to x = 4
This can be rewritten as:
0 < x < 4
Hence, the interval where the function is nonlinear and decreasing is 0 < x < 4
Read more about function intervals at:
brainly.com/question/13136492
#SPJ1
Answer:
For the L shaped thing, the area is 224 ft^2
Step-by-step explanation:
18*(18-10) + 10*(18-10) = 224
Just requires some visualizing :) Hope this helps <3
First you convert kilograms to pounds,
1 kilogram = 2.205 pounds
next you times the number of pounds per kilogram by the number of kilograms given that need to be turned into pounds.
80 times 2.205 = 176.4
next you subtract to get the answer
176.4 - 135= 41.4
so Ms. Johnson weighs 41.4 pounds less than herr husband
Answer:
1.1.1) -61
1.1.2) Term 42
Step-by-step explanation:
Tn= dn (difference) + t0 (term 0)
Tn= -4n+ 11
You can now take this general rule to find out the other terms.
Tn= -4(18)+11
Tn= -61
And the term -157
Tn= -4n+11
-157= -4n + 11
-157 - 11= - 4n
-168= -4n
-168/-4= n
42= n