Answer:
(29.14 ; 30.06)
Step-by-step explanation:
Given that'
Sample size (n) = 57
Mean (m) = 29.6
Population standard deviation (σ) = 2.7
Confidence interval = 80%
= (1 - 0.8) / 2 = 0.1
Mean ± z * σ/√n
Using the Z probability calculator : Z0. 1 = 1.28
Hence,
29.6 ± 1.28 * (2.7 / √57)
29.6 - (1.28 * 0.3576237) ; 29.6 + (1.28 * 0.3576237)
29.142241664 ; 30.057758336
(29.14 ; 30.06)
$119 - $68 = $51
51/68 x 100 = .75
.75 x 100 = 75%
So, there was a 75% percent increase in the price.
Answer:
4/18
Step-by-step explanation:
<span>(2.0x10^4)(3.0x10^3)
= ( 2 x 3)( 10^4 x 10^3)
= 6 x 10^7
hope it helps</span>
Step-by-step explanation:
<h2>
<em><u>You can solve this using the binomial probability formula.</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows:</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: </u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) </u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154when x=4 (4 4)(1/6)^4(5/6)^4-4 = 0.0008</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154when x=4 (4 4)(1/6)^4(5/6)^4-4 = 0.0008Add them up, and you should get 0.1319 or 13.2% (rounded to the nearest tenth)</u></em></h2>