Answer:
AM = 25, AC = 15, CM = 20
Step-by-step explanation:
The given parameters are;
In ΔACM, ∠C = 90°,
⊥
, AP = 9, and PM = 16
² +
² =
²
=
+ PM = 9 + 16 = 25
= 25
² =
² +
² = 9² +
²
∴
² = 9² +
²
Similarly we get;
² = 16² +
²
Therefore, we get;
² +
² = 9² +
² + 16² +
² =
² = 25²
2·
² = 25² - (9² + 16²) = 288
² = 288/2 = 144
= √144 = 12
From
² = 9² +
², we get
= √(9² + 12²) = 15
= 15
From,
² = 16² +
², we get;
= √(16² + 12²) = 20
= 20.
2^3 + (2j)^3 * 2j, with j = 3.
First let's input 3 in all of the integers:
2^3 + (6)^3 * 6.
Now let's multiply:
8 + 213 * 6
1278 + 8 = <u>1286</u>
It’s a positive number, it’s exactly the same distance from zero as the negative number he picked