1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kobotan [32]
3 years ago
5

Which of the pairs of ratios are equivalent? A) 12: 24, 50 :100 B) 16 to 3,27 to 5 C) 22/1, 68/3 D) 3/7, 17/35

Mathematics
1 answer:
RoseWind [281]3 years ago
3 0

Answer:

A

Step-by-step explanation:

equivalent because each are 1:2

You might be interested in
7 over 12 minus 5 over 12 as a fraction in simplest form
poizon [28]

Answer:

1/6

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
If f(x) = 3 - 1 and g(x) = x + 2, find (f-g)(x)
Kazeer [188]

Answer:

2x² + 4x

Step-by-step explanation:

= (3 - 1)(x + 2)(x)

= (2)(x + 2)(x)

= (2x + 4)(x)

= 2x² +4x

3 0
4 years ago
Find dy/dx x^3+y^3=18xy
tatyana61 [14]
Differentiate both sides of the equation.<span><span><span>d<span>dx</span></span><span>(<span>x3</span>+<span>y3</span>)</span>=<span>d<span>dx</span></span><span>(18xy)</span></span><span><span>d<span>dx</span></span><span>(<span>x3</span>+<span>y3</span>)</span>=<span>d<span>dx</span></span><span>(18xy)</span></span></span>Differentiate the left side of the equation.Tap for fewer steps...By the Sum Rule, the derivative of <span><span><span>x3</span>+<span>y3</span></span><span><span>x3</span>+<span>y3</span></span></span> with respect to <span>xx</span> is <span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>.<span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>Differentiate using the Power Rule which states that <span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span></span> is <span><span>n<span>x<span>n−1</span></span></span><span>n<span>x<span>n-1</span></span></span></span> where <span><span>n=3</span><span>n=3</span></span>.<span><span>3<span>x2</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span>3<span>x2</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>Evaluate <span><span><span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>.Tap for more steps...<span><span>3<span>x2</span>+3<span>y2</span><span>d<span>dx</span></span><span>[y]</span></span><span>3<span>x2</span>+3<span>y2</span><span>d<span>dx</span></span><span>[y]</span></span></span>Differentiate the right side of the equation.Tap for fewer steps...Since <span>1818</span> is constant with respect to <span>xx</span>, the derivative of <span><span>18xy</span><span>18xy</span></span> with respect to <span>xx</span> is <span><span>18<span>d<span>dx</span></span><span>[xy]</span></span><span>18<span>d<span>dx</span></span><span>[xy]</span></span></span>.<span><span>18<span>d<span>dx</span></span><span>[xy]</span></span><span>18<span>d<span>dx</span></span><span>[xy]</span></span></span>Differentiate using the Product Rule which states that <span><span><span>d<span>dx</span></span><span>[f<span>(x)</span>g<span>(x)</span>]</span></span><span><span>d<span>dx</span></span><span>[f<span>(x)</span>g<span>(x)</span>]</span></span></span> is <span><span>f<span>(x)</span><span>d<span>dx</span></span><span>[g<span>(x)</span>]</span>+g<span>(x)</span><span>d<span>dx</span></span><span>[f<span>(x)</span>]</span></span><span>f<span>(x)</span><span>d<span>dx</span></span><span>[g<span>(x)</span>]</span>+g<span>(x)</span><span>d<span>dx</span></span><span>[f<span>(x)</span>]</span></span></span> where <span><span>f<span>(x)</span>=x</span><span>f<span>(x)</span>=x</span></span> and <span><span>g<span>(x)</span>=y</span><span>g<span>(x)</span>=y</span></span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span></span>Rewrite <span><span><span>d<span>dx</span></span><span>[y]</span></span><span><span>d<span>dx</span></span><span>[y]</span></span></span> as <span><span><span>d<span>dx</span></span><span>[y]</span></span><span><span>d<span>dx</span></span><span>[y]</span></span></span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span></span>Differentiate using the Power Rule which states that <span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span></span> is <span><span>n<span>x<span>n−1</span></span></span><span>n<span>x<span>n-1</span></span></span></span> where <span><span>n=1</span><span>n=1</span></span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y⋅1)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y⋅1)</span></span></span>Multiply <span>yy</span> by <span>11</span> to get <span>yy</span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y)</span></span></span>Simplify.Tap for more steps...<span><span>18x<span>d<span>dx</span></span><span>[y]</span>+18y</span><span>18x<span>d<span>dx</span></span><span>[y]</span>+18y</span></span>Reform the equation by setting the left side equal to the right side.<span><span>3<span>x2</span>+3<span>y2</span>y'=18xy'+18y</span><span>3<span>x2</span>+3<span>y2</span>y′=18xy′+18y</span></span>Since <span><span>18xy'</span><span>18xy′</span></span> contains the variable to solve for, move it to the left side of the equation by subtracting <span><span>18xy'</span><span>18xy′</span></span> from both sides.<span><span>3<span>x2</span>+3<span>y2</span>y'−18xy'=18y</span><span>3<span>x2</span>+3<span>y2</span>y′-18xy′=18y</span></span>Since <span><span>3<span>x2</span></span><span>3<span>x2</span></span></span> does not contain the variable to solve for, move it to the right side of the equation by subtracting <span><span>3<span>x2</span></span><span>3<span>x2</span></span></span> from both sides.<span><span>3<span>y2</span>y'−18xy'=−3<span>x2</span>+18y</span><span>3<span>y2</span>y′-18xy′=-3<span>x2</span>+18y</span></span>Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>3<span>y2</span>y'−18xy'</span><span>3<span>y2</span>y′-18xy′</span></span>.Tap for fewer steps...Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>3<span>y2</span>y'</span><span>3<span>y2</span>y′</span></span>.<span><span>3y'<span>(<span>y2</span>)</span>−18xy'=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>)</span>-18xy′=-3<span>x2</span>+18y</span></span>Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>−18xy'</span><span>-18xy′</span></span>.<span><span>3y'<span>(<span>y2</span>)</span>+3y'<span>(−6x)</span>=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>)</span>+3y′<span>(-6x)</span>=-3<span>x2</span>+18y</span></span>Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>3y'<span>y2</span>+3y'<span>(−6x)</span></span><span>3y′<span>y2</span>+3y′<span>(-6x)</span></span></span>.<span><span>3y'<span>(<span>y2</span>−6x)</span>=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>-6x)</span>=-3<span>x2</span>+18y</span></span>Divide each term by <span><span><span>y2</span>−6x</span><span><span>y2</span>-6x</span></span> and simplify.Tap for fewer steps...Divide each term in <span><span>3y'<span>(<span>y2</span>−6x)</span>=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>-6x)</span>=-3<span>x2</span>+18y</span></span> by <span><span><span>y2</span>−6x</span><span><span>y2</span>-6x</span></span>.<span><span><span><span>3y'<span>(<span>y2</span>−6x)</span></span><span><span>y2</span>−6x</span></span>=−<span><span>3<span>x2</span></span><span><span>y2</span>−6x</span></span>+<span><span>18y</span><span><span>y2</span>−6x</span></span></span><span><span><span>3y′<span>(<span>y2</span>-6x)</span></span><span><span>y2</span>-6x</span></span>=-<span><span>3<span>x2</span></span><span><span>y2</span>-6x</span></span>+<span><span>18y</span><span><span>y2</span>-6x</span></span></span></span>Reduce the expression by cancelling the common factors.Tap for more steps...<span><span>3y'=−<span><span>3<span>x2</span></span><span><span>y2</span>−6x</span></span>+<span><span>18y</span><span><span>y2</span>−6x</span></span></span><span>3y′=-<span><span>3<span>x2</span></span><span><span>y2</span>-6x</span></span>+<span><span>18y</span><span><span>y2</span>-6x</span></span></span></span>Simplify the right side of the equation.Tap for more steps...<span><span>3y'=−<span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span></span><span>3y′=-<span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span></span></span>Divide each term by <span>33</span> and simplify.Tap for fewer steps...Divide each term in <span><span>3y'=−<span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span></span><span>3y′=-<span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span></span></span> by <span>33</span>.<span><span><span><span>3y'</span>3</span>=−<span><span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span>3</span></span><span><span><span>3y′</span>3</span>=-<span><span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span>3</span></span></span>Reduce the expression by cancelling the common factors.Tap for more steps...<span><span>y'=−<span><span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span>3</span></span><span>y′=-<span><span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span>3</span></span></span>Simplify the right side of the equation.Tap for more steps...<span><span>y'=−<span><span><span>x2</span>−6y</span><span><span>y2</span>−6x</span></span></span><span>y′=-<span><span><span>x2</span>-6y</span><span><span>y2</span>-6x</span></span></span></span>Replace <span><span>y'</span><span>y′</span></span> with <span><span><span>dy</span><span>dx</span></span><span><span>dy</span><span>dx</span></span></span>.<span><span><span>dy</span><span>dx</span></span>=−<span><span><span><span>x2</span>−6y</span><span><span>y2</span>−6x</span></span></span></span>
6 0
3 years ago
Why do you think we need a horizontal axis and a vertical axis?
Dimas [21]
A vertical line on a sheet of lined graph paper is a vertical axis (normally called the X axis) that denotes everything to the left of the line is negative and everything to the right is positive. A horizontal line on that graph paper (normally called the Y axis) denotes everything below the line is negative and every thing above is positive. Each axis is graduated in scale. The equation X=Y has no single answer, but we can plot a locus of points on your graph by assigning values to X ( or Y) and create a diagonal line which passes thru the origin (where the lines cross) that denotes all possible answers to the equation that exist within the limits of the graph paper. Every equation will plot a locus of points.
5 0
3 years ago
SOLVE EQUATION<br><br><br> 20*[7.5*10 exponent of -2]
BlackZzzverrR [31]
20(7.5*10^-2)
the *10^-2 means we move the decimal of 7.5 2 places to the left
20(.075)
=1.5
7 0
3 years ago
Read 2 more answers
Other questions:
  • Simplify completely quantity 2 x minus 24 over 8.
    7·2 answers
  • Raj has a full deck of 52 cards. Sydney chooses the queen of clubs and holds onto it. Then Yolanda chooses a card. What is the t
    14·2 answers
  • What is the length of the segment connecting the points (−9, 3) and (−9, −2)?
    13·1 answer
  • Subtraction using ten facts
    6·1 answer
  • What's must be true about a rhombus that is inscribed in a cirlcle?
    5·1 answer
  • Shayla is having a picnic and wants to buy enough hamburgers so that each guest can have one. If she is planning on having 52 gu
    7·1 answer
  • Which doubles fact helps you solve 5+6=11?
    11·1 answer
  • Whats the answer to 4c+5=27
    6·2 answers
  • I need to know these answers! My home work is due in an hour and I don’t know how to do this
    11·1 answer
  • Solve the following b)7+2x/3=5​
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!