The answer would be C. (He counted Yolanda's candy as his own).
This is found by multiplying 500 (starting number of candy) and .64 (percentage divided by a hundred). Thjs would guve you 320, which you would then subtract from the starting number of candy (500) to get 180. 180 is Yolanda's number of candy, which gives you the answer.
Point S makes the two connected angles the same. They both have right angles.
And one side of each is congruent.
This means you know 2 angles are the same and one side is the same.
You would use ASA (Angle, Side, Angle)
Answer: The system of equations is:
x + 2y + 2 = 4
y - 3z = 9
z = - 2
The solution is: x = -22; y = 15; z = -2;
Step-by-step explanation: ONe way of solving a system of equations is using the Gauss-Jordan Elimination.
The method consists in transforming the system into an augmented matrix, which is writing the system in form of a matrix and then into a <u>Row</u> <u>Echelon</u> <u>Form,</u> which satisfies the following conditions:
- There is a row of all zeros at the bottom of the matrix;
- The first non-zero element of any row is 1, which called leading role;
- The leading row of the first row is to the right of the leading role of the previous row;
For this question, the matrix is a Row Echelon Form and is written as:
![\left[\begin{array}{ccc}1&2&2\\0&1&3\\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%262%5C%5C0%261%263%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}4\\9\\-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C9%5C%5C-2%5Cend%7Barray%7D%5Cright%5D)
or in system form:
x + 2y + 2z = 4
y + 3z = 9
z = -2
Now, to determine the variables:
z = -2
y + 3(-2) = 9
y = 15
x + 30 - 4 = 4
x = - 22
The solution is (-22,15,-2).
Answer:
can not be expressed as a square of any other number.
Step-by-step explanation:
The number 1953125 is equal to
.
Now, the above statement gives an idea that 1953125 i.e.
is not a square number as 9 is not a multiple of 2.
So, we can not express
as a square of any other number.
We can only express
as
.
( Answer )