1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotykmax [81]
3 years ago
13

MBC= measure of minor arc AC true or false?

Mathematics
1 answer:
Mashcka [7]3 years ago
4 0

Answer:

It's minor arc AC, it's true

You might be interested in
(2x-1)(6x-7) multiply and simplify
alexgriva [62]
(2x - 1)(6x - 7)
2x(6x - 7) - 1(6x - 7)
2x(6x) - 2x(7) - 1(6x) + 1(7)
12x² - 14x - 6x + 7
12x² - 20x + 7
6 0
3 years ago
Help plz!!
gizmo_the_mogwai [7]

Answer:

my answer isn't on the list, but doing the math the median increased from 39 to 40, but the mean decreased from 49.16 to 45.57

5 0
3 years ago
What is 3 1/8 x 2 3/5
Lisa [10]

Answer:

8\frac{1}{8}

Step-by-step explanation:

3\frac{1}{8} \times 2 \frac{3}{5}

=\frac{25}{8} \times \frac{13}{5}

=\frac{25\times13}{8\times5}

=\frac{325}{40}

=\frac{325/5}{40/5}

=\frac{65}{8}

=8\frac{1}{8}

Hope this helps :)

3 0
3 years ago
And how many different ways can five books be arranged on a Shelf<br>1. 5<br>2. 25<br>3. 120
Kay [80]
If we do the formula: 1*2*3*4*5, it would give us 120! So the answer is 3. 120! Hope this helped! Brainliest is always appreciated.
4 0
3 years ago
Read 2 more answers
Find the equation of the quadratic function f whose graph is shown below.
Marianna [84]

Step-by-step explanation:

A quadratic function is a second-degree polynomial function with the general form

                                          f(x) \ = \ ax^{2} \ + \ bx \ + \ c,

where a, b, and c are real numbers, and a \ \neq \ 0.

The standard form or the vertex form of a quadratic function is, however, a little different from the general form. To get the standard form from the general form, we need to use the "complete the square" method.

                          f(x) \ = \ ax^{2} \ + \ bx \ + \ c \\ \\ \\ f(x) \ = \ a\left(x^{2} \ + \ \displaystyle\frac{b}{a}x \right) \ + \ c \\ \\ \\ f(x) \ = \ a\left[x^{2} \ + \ \displaystyle\frac{b}{a}x \ + \ \left(\displaystyle\frac{b}{2a}\right)^{2} \ - \ \left(\displaystyle\frac{b}{2a}\right)^{2} \right] \ + \ c \\ \\ \\ f(x) \ = \ a\left[x^{2} \ + \ \displaystyle\frac{b}{a}x \ + \ \left(\displaystyle\frac{b}{2a}\right)^{2}\right] \ - \ a\left(\displaystyle\frac{b}{2a}\right)^{2} \ + \ c

                          f(x) \ = \ a\left(x \ + \ \displaystyle\frac{b}{2a}\right)^{2} \ + \ c \ - \ a\left(\displaystyle\frac{b^{2}}{4a^{2}}\right) \\ \\ \\ f(x) \ = \ a\left(x \ + \ \displaystyle\frac{b}{2a}\right)^{2} \ + \ c \ - \ \displaystyle\frac{b^{2}}{4a}

Let

                                         h \ = \ -\displaystyle\frac{b}{2a}     and     k \ = \ c \ - \ \displaystyle\frac{b^{2}}{4a},

then the expression reduces into

                                              f(x) \ = \ a \left(x \ - \ h\right)^{2} \ + \ k,

where the point (<em>h</em>, <em>k</em>) are the coordinates for the vertex of the quadratic function.

There are two different methods to approach this question. First, we consider the general form of the quadratic function, it is observed that has a y-intercept at the point \left(0, \ 2\right), so

                                            f(0) \ = \ -2 \\ \\ \\ f(0) \ = \ a(0)^{2} \ + \ b(0) + c \\ \\ \\ c = \ -2.

Additionally, it is pointed that two distinct points (-1, \ -3) and (-4, \ 6) lies on the quadratic graph, hence

                                       f(-1) \ = \ -3 \\ \\ \\ f(-1) \ = \ a(-1)^{2} \ + \ b(-1) \ -2 \\ \\ \\ \-\hspace{0.36cm} -3 \ = \ a \ - \ b \ -2 \\ \\ \\ \-\hspace{0.3} a \ - \ b \ = \ -1 \ \ \ \ \ \ $-----$ \ (1)

and

                                     \-\hspace{0.18cm}f(-4) \ = \ 6 \\ \\ \\ \-\hspace{0.18cm} f(-4) \ = \ a(-4)^{2} \ + \ b(-4) \ -2 \\ \\ \\ \-\hspace{0.97cm} 6 \ = \ 16a \ - \ 4b \ -2 \\ \\ \\ \-\hspace{0.98cm} 8 \ = \ 16a \ - \ 4b \\ \\ \\ 4a \ - \ b \ = \ 2 \ \ \ \ \ \ $-----$ \ (2).

Subtract equation (1) from equation (2) term-by-term,

                          \-\hspace{0.72cm} (4a \ - \ b) \ - \ (a \ - \ b) \ = \ 2 \ - \ (-1) \\ \\ \\ (4a \ - \ a) \ + \ \left[-b \ - \ (-b)\right] \ = \ 2 \ + \ 1 \\ \\ \\ \-\hspace{3.8cm} 3a \ = \ 3 \\ \\ \\ \-\hspace{4cm} a \ = \ 1

Substitute a \ = \ 1 into equation (1),

                                                 1 \ - \ b \ = \ -1 \\ \\ \\ \-\hspace{0.86cm} b \ = \ 2.

Therefore, the equation of the quadratic function is

                                               f(x) \ = \ x^2 \ + \ 2x \ -2.

\rule{12.5cm}{0.02cm}

Alternatively, the vertex of the quadratic function is given as the point (-1, \ -3), substitute these coordinates into the vertex form of a quadratic function.

                                            f(x) = a\left(x \ + \ 1\right)^{2} \ - \ 3.

Substitute the point (-4, \ 6) into the function above,

                                     f(-4) \ = \ 6 \\ \\ \\ f(-4) \ = \ a\left[(-4) \ + \ 1\right]^{2} \ - \ 3 \\ \\ \\ \-\hspace{0.75cm} 6 \ = \ a(-3)^{2} \ - \ 3 \\ \\ \\ \-\hspace{0.55cm} 9a \ = \ 9 \\ \\ \\ \-\hspace{0.75cm} a \ = \ 1.

Therefore, the general form of the quadratic function is

                                       f(x) \ = \ (x \ + \ 1)^{2} \ - \ 3 \\ \\ \\ f(x) \ = \ (x^2 \ + \ 2x \ + \ 1) \ - \ 3 \\ \\ \\ f(x) \ = \ x^2 \ + \ 2x \ - \ 2.

6 0
3 years ago
Other questions:
  • The types of flowers shown in the table make up an arrangement. What percent of the flowers in the arrangement are roses
    11·2 answers
  • Find the greatest commen factor of 96 and 48
    7·2 answers
  • Jk has endpoints J(-1, 10) and K(-5, 2). MN had the endpoints M(9, -7) and N(1, -3). is JK congruent to MN?
    6·1 answer
  • Please answer correctly!
    11·2 answers
  • What is 5/6 * 3/7 ÷ 2/3​
    12·1 answer
  • ASAP HELPPPPPPPPPPPPPPPP!!!!!!!!!!!!!!!
    13·2 answers
  • What is the image point of ( − 7 , 5 ) after a translation right 5 units and up 4 units?
    14·1 answer
  • Describe the steps for copying a line segment.
    10·1 answer
  • Please help me I can’t get this wrong
    5·1 answer
  • Can I get some help please ​
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!