So in order for us to know the area of the square that is not covered by the circle, we need to find first both the areas of the square and the circle.
So for the area of the square it is A = sxs. And for the circle is A = pi*r^2.
Let us find the area of the square first given that the side is 3 inches.
So A = 3*3
A = 9 square inches.
Next is the area of the circle. Since the center of the circle is the same with the center of the square, the radius would be 1.5.
SO, A = (3.14)(1.5)^2
A = 2.25 (3.14)
A = 7.065 square inches.
Next, we deduct the area of circle from area of square and the result would be 1.935 <span>in². So the answer for this would be option B.
Hope this answer helps.</span>
Answer: its c In step 3, he should have divided both sides by StartFraction 6 Over 4 Endfraction.
Step-by-step explanation:
Try this option:
if x+y=-9 is I (one)
and x+2y=-25 is II (two), then
if II-I, then (x+2y)-(x+y)=-25+9 ⇔ y=-16.
Answer:
Therefore the required polynomial is
M(x)=0.83(x³+4x²+16x+64)
Step-by-step explanation:
Given that M is a polynomial of degree 3.
So, it has three zeros.
Let the polynomial be
M(x) =a(x-p)(x-q)(x-r)
The two zeros of the polynomial are -4 and 4i.
Since 4i is a complex number. Then the conjugate of 4i is also a zero of the polynomial i.e -4i.
Then,
M(x)= a{x-(-4)}(x-4i){x-(-4i)}
=a(x+4)(x-4i)(x+4i)
=a(x+4){x²-(4i)²} [ applying the formula (a+b)(a-b)=a²-b²]
=a(x+4)(x²-16i²)
=a(x+4)(x²+16) [∵i² = -1]
=a(x³+4x²+16x+64)
Again given that M(0)= 53.12 . Putting x=0 in the polynomial
53.12 =a(0+4.0+16.0+64)
=0.83
Therefore the required polynomial is
M(x)=0.83(x³+4x²+16x+64)
Answer:
70,000,000,000,000,000,000,000
Step-by-step explanation: